A general framework for comparing different turbulent wall flows in terms of their integral budget of kinetic energy is introduced and applied to plane Couette and Poiseuille flows. The works of Hasegawa et al. (2014) and Gatti et al. (2018) discussing pressure-driven Poiseuille flows are extended to account for the externally-imposed shear typical of a Couette flow. The mean velocity is decomposed into a Stokes solution and a deviation field, which leads to a similar decomposition of the integral budget of kinetic energy as well. Thanks to a power-based non-dimensionalisation, several quantities (including some velocity scales and the decomposed budget terms) can be expressed as functions of a power-based Reynolds number and integrals of the shear stress. The framework is then applied to a database of Poiseuille and Couette flows, built with new Direct Numerical Simulations and integrated with literature data. Terms of the integral budget for the kinetic energy are found to be comparable when the friction-based Reynolds number Reτ for Poiseuille is roughly three times the one for Couette. Among these budget terms, the laminar dissipation ΦL is of particular importance, as it can be interpreted as the ratio between the power required by the Stokes solution and the actual mean flow. Since the Stokes component can be demonstrated to have the least power requirements, ΦL can be regarded as an efficiency. Lastly, the wall-normal profiles of the turbulent kinetic energy budget terms for Couette and Poiseuille are compared under different conditions, such as keeping Reτ or ΦL constant. It is found that a consistently improved correspondence in the buffer layer (y+ ≈ 10) of several statistics is obtained in the latter case, both in terms of peak position and amplitude. All these findings suggest that laminar dissipation ΦL should be preferred to Reτ as a means of comparing different flows.
È qui presentato un approccio generale per il paragone di diverse correnti di parete turbolente in termini del loro bilancio integrale di energia cinetica; tale approccio viene poi applicato alle correnti piane di Couette e Poiseuille. I lavori di Hasegawa et al. (2014) e Gatti et al. (2018) riguardo correnti mosse da un gradiente di pressione (correnti di Poiseuille) vengono estesi per considerare anche l’imposizione di uno sforzo di taglio tipico di una corrente di Couette. Il campo di velocità media viene decomposto nella somma di una soluzione di Stokes e di un campo di deviazione; ne risultano decomposti anche i termini di bilancio integrale di energia cinetica. Successivamente, utilizzando una opportuna adimensionalizzazione, si esprimono varie grandezze (tra cui alcune scale di velocità e gli stessi termini di bilancio decomposti) come funzioni di un numero di Reynolds basato su una scala di potenza e di integrali del profilo dello sforzo di taglio. Tale analisi viene poi applicata ad un database di correnti di Couette e Poiseuille, costituito sia da nuove Direct Numerical Simulations, sia da dati reperiti in letteratura. Si osservano valori simili dei termini di bilancio integrale di energia cinetica quando il numero di Reynolds Reτ basato sull’attrito a parete di Poiseuille è circa tre volte quello di Couette. Tra questi termini di bilancio, la dissipazione laminare ΦL gioca un ruolo di rilievo: essa può essere interpretata come il rapporto tra la potenza necessaria per muovere una corrente di Stokes e quella effettivamente richiesta dal campo medio. Poiché si può dimostrare che la corrente di Stokes richiede la potenza minima, ΦL rappresenta di fatto un rendimento. Infine, si paragonano i profili dei termini di bilancio locale di energia cinetica turbolenta di due correnti di Couette e Poiseuille scelte con vari criteri; per esempio, tale confronto viene svolto tra due correnti aventi lo stesso Re τ , oppure lo stesso ΦL . Quest’ultima opzione produce una buona corrispondenza di varie statistiche nel buffer layer (y+ ≈ 10), sia in termini di posizione dei picchi, sia in termini della loro ampiezza. Ciò suggerisce che la dissipazione laminare sia più adatta rispetto a Reτ per correlare correnti turbolente diverse.
Global energy budgets in turbulent plane Couette and Poiseuille flows
ANDREOLLI, ANDREA
2019/2020
Abstract
A general framework for comparing different turbulent wall flows in terms of their integral budget of kinetic energy is introduced and applied to plane Couette and Poiseuille flows. The works of Hasegawa et al. (2014) and Gatti et al. (2018) discussing pressure-driven Poiseuille flows are extended to account for the externally-imposed shear typical of a Couette flow. The mean velocity is decomposed into a Stokes solution and a deviation field, which leads to a similar decomposition of the integral budget of kinetic energy as well. Thanks to a power-based non-dimensionalisation, several quantities (including some velocity scales and the decomposed budget terms) can be expressed as functions of a power-based Reynolds number and integrals of the shear stress. The framework is then applied to a database of Poiseuille and Couette flows, built with new Direct Numerical Simulations and integrated with literature data. Terms of the integral budget for the kinetic energy are found to be comparable when the friction-based Reynolds number Reτ for Poiseuille is roughly three times the one for Couette. Among these budget terms, the laminar dissipation ΦL is of particular importance, as it can be interpreted as the ratio between the power required by the Stokes solution and the actual mean flow. Since the Stokes component can be demonstrated to have the least power requirements, ΦL can be regarded as an efficiency. Lastly, the wall-normal profiles of the turbulent kinetic energy budget terms for Couette and Poiseuille are compared under different conditions, such as keeping Reτ or ΦL constant. It is found that a consistently improved correspondence in the buffer layer (y+ ≈ 10) of several statistics is obtained in the latter case, both in terms of peak position and amplitude. All these findings suggest that laminar dissipation ΦL should be preferred to Reτ as a means of comparing different flows.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Andreolli.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
2.95 MB
Formato
Adobe PDF
|
2.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153027