This thesis work was born from the idea of going deeper into Guizzi et al.’s article with the title "Thermodynamic analysis of a liquid air energy storage system" about a stand alone LAES system. This plant could be a solution to increase the presence of renewable energies and hence to decrease the dependency by fuel. In order to understand the feasibility of this system, all the components included in the Guizzi’s plant layout will be sized. Nowadays only a pilot LAES is working in the UK. The scope of this work is to design a larger plant which could produce 2.5 GWh of energy and could be competitive with the other Energy Storage System (ESS). As it is well known, the renewable energies are discontinuous and not storable except for water, which could be stored in high altitude basins and drained through turbines when energy is required. Hence, the necessity to store energy during the production peak and then to release the energy to the grid during the request period. Although there are several systems to store energy, they all have their advantages and disadvantages in particular related to the investment cost, cost of energy produced, adaptability to the grid and utility life. In the first chapter the principal ESS will be introduced highlighting their strengths and weaknesses. This thesis work will focus on the design of a LAES plant stand alone: LAES, which stands for Liquid Air Energy Storage, employed ambient gas air and thanks to compression and cooling, the energy is stored as liquid stream. When the grid requires power, this liquid flow is pumped, heated and expanded in turbines. The advantage of the proposed plant layout is its autonomy, in fact it works without any heat source from other plants, but it is able to store heat and reuse it in the production phase. Another benefit is that the studied LAES is not bound from the geographical constrains, differently by the CAES which is a similar way to store energy but it needs caves because the air is stored in gas phase, and thus higher volume is necessary. The purpose of this work is to design the devices that constitute the plant, in particular focusing on the heat exchangers: the aim is to have efficient instruments but compact in order to decrease the investment cost. The starting point is Guizzi et al.’s article which includes all the thermodynamic points of the plant, which will be verified sizing all the machines. The plant proposed in the cited article will be modified, in particular the hot storage circuit: it will be introduced a cooling part with water and the storage will be done at different temperature. This choice is related to the fact that at low temperature the thermal oil, employed in original version, has too high pressure loss and this causes an increment of pumps power and thickness of tubes. The HXs, employed and discussed in third chapter, are plate-fin when the pressure is elevated while tube-fin in other case; in both instances the goal is to reduce the pressure losses on the air side at high pressure in order to keep high round trip efficiency of the cycle. The major part of these devices work with liquid such as Essotherm 650, methanol and propane: all the three fluids are employed to store heat, in particular the first is used to cool down air during the compressor intercooling and then it provides heat during the production energy. The choice of these three substances is related to their properties and capacity to store energy. Furthermore, in the plant there are HXs with three streams: in this case the HX will be split in two parts proportional to heat exchanged and they will be modelled as two HXs in parallel. In the fourth chapter compressors, pumps and expanders will be designed in a general way, without focusing on the height of blades or impellers, but defining the typology (radial or axial), the number of stages and the rotation speed. Furthermore, in this chapter the separator liquid-gas, necessary to obtain liquid air to be stored, will be sized and also the tanks which are fundamental to keep high the efficiency of the plant and to reduce the losses to the environment. The unique device, which is only discussed theoretically, is the cryo turbine, because it expands in two phase region and hence it is difficult to be designed. The chapter is ended with the estimation of the round trip efficiency which comes out equal to 54.3 %, about 0.1 % lower than the one computed in the original article. The difference is due to the inclusion of all the pumps power of the plant and not as in Guizzi's article in which the ones for methanol, propane and Essotherm are not included. After the sizing of all the components it results that defining the DeltaT of approach point equals 5 °C for the cold box, as assumed in Guizzi’s article, means to design huge devices. A best solution is to increase this difference of temperature in order to reduce the dimensions and to have a more feasible plant on the economical point of view. Furthermore, after the sizing, it can be confirmed that assuming 1 % pressure loss on all the HXs sides is not correct, in particular for the ones with liquids. Otherwise with the modifications proposed, it results a feasible and viable option between the principal ESS present on the market.
Questa tesi nasce dall’idea di voler approfondire l’articolo pubblicato da G. Guizzi etal. con titolo "Thermodynamic analysis of a liquid air energy storage system" ("Analisi termodinamica di un sistema per lo stoccaggio di energia con aria liquida") riguardante lo studio di un impianto LAES autosufficiente, ovvero funzionante senza fonti di calore esterne. Questa installazione può essere una soluzione per favorire l’aumento dei sistemi di energia che sfruttano le energie rinnovabili e quindi diminuire la dipendenza dai combustibili. Per comprendere se l’impianto proposto è tecnicamente fattibile, ogni componente verrà dimensionato. Ad oggi esiste un solo impianto LAES pilota funzionante, lo scopo dunque di questo lavoro è di progettarne uno più grande che possa produrre 2.5 GWh di energia e possa essere competitivo rispetto gli altri sistemi già esistenti. Come è risaputo, le energie rinnovabili sono discontinue e non accumulabili ad eccezione dell’acqua che può essere raccolta in un bacino ad elevata altezza e convogliata nelle turbine più a valle quando è necessario produrre energia. Da questi due principali problemi nasce la necessità di stoccare energia durante i picchi di produzione e di reimmetterla nella rete durante i periodi di richiesta. Sebbene ci siano diversi sistemi di accumulo, ognuno presenta vantaggi e svantaggi in termini di investimento iniziale, costo dell’energia prodotta, integrazione con la rete e vita utile. Nel primo capitolo verranno introdotti i principali sistemi evidenziando punti di forza e di debolezza di ciascuno. In questa tesi l’attenzione è posta sul dimensionamento di un impianto LAES autosufficiente: l’acronimo significa "stoccaggio di energia con aria liquida" ed attraverso la compressione e il raffreddamento dell’aria ambiente, l’energia viene immagazzinata sotto forma di aria liquida. Quando la rete richiede potenza, questo liquido viene pompato, scaldato ed espanso in turbina. Il vantaggio dell’impianto proposto è la sua autonomia, infatti non sono necessarie fonti di calore esterne ma durante la fase di produzione viene riutilizzato il calore immagazzinato nel periodo di accumulo di energia. Inoltre l’installazione studiata non è vincolata dal punto di vista geografico, differentemente da quanto accade per il Compressed Air Energy Storage (CAES) il quale funziona in modo simile ma l’aria viene accumulata in caverne perchè lo stocaggio avviene con il fluido in forma gassosa e quindi necessita un maggior volume. Lo scopo di questa tesi è di dimensionare i componenti che compongono l’impianto, in particolar modo gli scambiatori di calore: l’obiettivo è di ottenere strumenti efficienti ma compatti in modo da ridurre l’investimento iniziale. Il punto di partenza è stato l’articolo di G. Guizzi, nel quale tutti i punti termodinamici sono riportati e che sono stati verificati durante il dimensionamento. L’impianto proposto nell’articolo è stato però modificato, in particolare la parte riguardante lo stoccaggio dell’Essotherm 650: è stato introdotto un raffreddamento ad acqua e l’accumulo freddo di olio è stato realizzato ad una temperatura diversa. Questa scelta è dettata dal fatto che l’olio, impiegato nell’impianto originale, a basse temperature presenta perdite di pressione elevate negli scambiatori e questo porta ad un aumento di potenza delle pompe e dello spessore dei tubi. Nel terzo capitolo vengono dimensionati gli scambiatori: essi sono a piastre alettate per elevate pressioni mentre a tubi alettati negli altri casi; con entrambe le tipologie l’obiettivo è di ridurre le perdite di pressione sul lato aria per mantenere un’alta efficienza dell’impianto. La maggior parte di questi dispositivi utilizza liquidi come Essotherm 650, metanolo e propano: questi tre fluidi sono impiegati per immagazzinare calore, in particolare il primo per raffreddare l’aria durante la compressione e riutilizzare questo calore durante la fase di produzione dell’energia. Queste tre sostanze sono state scelte sulla base delle loro proprietà e capacità di assorbire di calore. Inoltre nell’impianto sono presenti scambiatori a tre fluidi: in questo caso il componente viene diviso a sua volta in due proporzionalmente al calore scambiato e vengono quindi dimensionati separatamente. Nel quarto capitolo vengono definiti compressori, pompe e turbine in modo generale, senza concentrarsi sull’altezza di palette e giranti ma limitandosi alla tipologia (radiale o assiale), al numero di stadi e alla velocità di rotazione. Inoltre vengono determinate le dimensioni del separatore liquido-gas necessario per ottenere aria liquida da accumulare e anche quelle dei serbatoi, strumenti fondamentali per ottenere un’alta efficienza dell’impianto e non disperdere calore verso l’ambiente. L’unica macchina che viene solo discussa teoricamente è la turbina criogenica, la quale espande in campo bifase ed è dunque di difficile progettazione. Il quarto capitolo si conclude con una stima della "round trip efficiency" la quale risulta uguale a 54.3 %, circa 0.1 % inferiore rispetto a quella calcolata nell'articolo originario. Tale differenza è dovuta alla considerazione delle pompe per il metanolo, per il propano e per l'Essotherm 650 che non sono state invece incluse inizialmente. A seguito del dimensionamento di tutti i componenti, risulta che il DeltaT minimo di 5 °C per la "cold box", come ipotizzato nell’articolo, comporta grandi scambiatori. Il dimensionamento può essere migliorato aumentando la differenza di temperatura in modo da diminuire le dimensioni e rendere l’impianto più fattibile dal punto di vista economico. Inoltre dal dimensionamento degli scambiatori si evince che assumere una perdita costante dell’1 % per ogni scambiatore non è corretto, sopratutto nel caso venga utilizzato un liquido. Ad ogni modo, l’impianto, con le variazioni proposte, risulta un’opzione attuabile e fattibile tra quelle già presenti sul mercato.
Sizing of a stand alone liquid air energy storage (LAES)
MONTORFANO, CATERINA
2018/2019
Abstract
This thesis work was born from the idea of going deeper into Guizzi et al.’s article with the title "Thermodynamic analysis of a liquid air energy storage system" about a stand alone LAES system. This plant could be a solution to increase the presence of renewable energies and hence to decrease the dependency by fuel. In order to understand the feasibility of this system, all the components included in the Guizzi’s plant layout will be sized. Nowadays only a pilot LAES is working in the UK. The scope of this work is to design a larger plant which could produce 2.5 GWh of energy and could be competitive with the other Energy Storage System (ESS). As it is well known, the renewable energies are discontinuous and not storable except for water, which could be stored in high altitude basins and drained through turbines when energy is required. Hence, the necessity to store energy during the production peak and then to release the energy to the grid during the request period. Although there are several systems to store energy, they all have their advantages and disadvantages in particular related to the investment cost, cost of energy produced, adaptability to the grid and utility life. In the first chapter the principal ESS will be introduced highlighting their strengths and weaknesses. This thesis work will focus on the design of a LAES plant stand alone: LAES, which stands for Liquid Air Energy Storage, employed ambient gas air and thanks to compression and cooling, the energy is stored as liquid stream. When the grid requires power, this liquid flow is pumped, heated and expanded in turbines. The advantage of the proposed plant layout is its autonomy, in fact it works without any heat source from other plants, but it is able to store heat and reuse it in the production phase. Another benefit is that the studied LAES is not bound from the geographical constrains, differently by the CAES which is a similar way to store energy but it needs caves because the air is stored in gas phase, and thus higher volume is necessary. The purpose of this work is to design the devices that constitute the plant, in particular focusing on the heat exchangers: the aim is to have efficient instruments but compact in order to decrease the investment cost. The starting point is Guizzi et al.’s article which includes all the thermodynamic points of the plant, which will be verified sizing all the machines. The plant proposed in the cited article will be modified, in particular the hot storage circuit: it will be introduced a cooling part with water and the storage will be done at different temperature. This choice is related to the fact that at low temperature the thermal oil, employed in original version, has too high pressure loss and this causes an increment of pumps power and thickness of tubes. The HXs, employed and discussed in third chapter, are plate-fin when the pressure is elevated while tube-fin in other case; in both instances the goal is to reduce the pressure losses on the air side at high pressure in order to keep high round trip efficiency of the cycle. The major part of these devices work with liquid such as Essotherm 650, methanol and propane: all the three fluids are employed to store heat, in particular the first is used to cool down air during the compressor intercooling and then it provides heat during the production energy. The choice of these three substances is related to their properties and capacity to store energy. Furthermore, in the plant there are HXs with three streams: in this case the HX will be split in two parts proportional to heat exchanged and they will be modelled as two HXs in parallel. In the fourth chapter compressors, pumps and expanders will be designed in a general way, without focusing on the height of blades or impellers, but defining the typology (radial or axial), the number of stages and the rotation speed. Furthermore, in this chapter the separator liquid-gas, necessary to obtain liquid air to be stored, will be sized and also the tanks which are fundamental to keep high the efficiency of the plant and to reduce the losses to the environment. The unique device, which is only discussed theoretically, is the cryo turbine, because it expands in two phase region and hence it is difficult to be designed. The chapter is ended with the estimation of the round trip efficiency which comes out equal to 54.3 %, about 0.1 % lower than the one computed in the original article. The difference is due to the inclusion of all the pumps power of the plant and not as in Guizzi's article in which the ones for methanol, propane and Essotherm are not included. After the sizing of all the components it results that defining the DeltaT of approach point equals 5 °C for the cold box, as assumed in Guizzi’s article, means to design huge devices. A best solution is to increase this difference of temperature in order to reduce the dimensions and to have a more feasible plant on the economical point of view. Furthermore, after the sizing, it can be confirmed that assuming 1 % pressure loss on all the HXs sides is not correct, in particular for the ones with liquids. Otherwise with the modifications proposed, it results a feasible and viable option between the principal ESS present on the market.File | Dimensione | Formato | |
---|---|---|---|
Sizing of a stand alone LAES_ Montorfano_Caterina.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.31 MB
Formato
Adobe PDF
|
4.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153083