CubeSats are a class of miniaturized satellites, originally developed in 1999 for academic purposes. Their importance has grown with time, with several missions involving CubeSats having been developed by space agencies. To control the attitude of a satellite, actuators are needed such as magnetic actuators, but these are not useful in deep-space. Reaction wheels can be used but require an additional actuator for de-saturation. Alternatively, thrusters can be used, but little has been analysed to the most appropriate controls and configurations of thrusters for Cubesats. This thesis deals with the attitude control of a 12U CubeSat, using thrusters. The aim of this work is to assess the performance during detumbling and slew manoeuvre comparing different control laws and thruster configurations. Two kinds of thrusters were investigated: Cold Gas thrusters and Electric thrusters. Different configurations were tested, i.e. different numbers of actuators and different spatial orientations. Two ideal control laws were investigated, and they belong to what is called control allocation: the idea is to map the ideal control on each actuator. First one is a simple Proportional Law, and second one is a Super-Twisting algorithm based on Sliding Mode control. Furthermore, a main part of real control implemented is a Pulse Width Mode control, which states when convergence is reached and the manoeuvre ends. The key performance parameters studied are the time to reach convergence, the Overall Total Impulse (i.e. of the whole configuration, not of the single thruster) and the precision of the manoeuvre (i.e. angular velocity or steady state error evaluated at convergence time). In addition, a robustness analysis of the sensitivity to the positioning of the centre of mass was undertaken.
I CubeSat sono una classe di satelliti miniaturizzati, nati per scopi accademici nel 1999. La loro importanza è cresciuta nel tempo, tanto che sono state realizzate molte missioni che implicano i CubeSat dalle agenzie spaziali. Per controllare l’assetto di un satellite, sono necessari degli attuatori come quelli magnetici, inutili nello spazio profondo. Possono essere impiegate le ruote di reazione (reaction wheels), ma richiedono attuatori addizionali per la desaturazione. In alternativa, possono essere usati i propulsori, ma sono state fatte poche investigazioni approfondite su controllo e configurazioni più appropriati sui CubeSat. Questa tesi prende in esame il controllo dell’assetto di un CubesSat 12, attraverso l’uso di propulsori. Obiettivo è analizzare le prestazioni durante le manovre di stabilizzazione e puntamento de satellite, confrontando diverse leggi di controllo e configurazioni dei propulsori. Sono stati studiati due tipi di propulsori: a razzo ed elettrici. Sono state analizzate diverse configurazioni, cioè diverso numero di attuatori e diverse orientazioni spaziali. Due sono le leggi di controllo ideale studiate, appartenenti al Control Allocation: l’idea è di mappare il controllo ideale su ogni attuatore. La prima legge è una semplice dipendenza proporzionale, mentre la seconda è un algoritmo chiamato Super Twisting, basato sul controllo Sliding Mode. In più, una parte fondamentale del controllo reale è un controllore a modulazione di larghezza di impulso (PWM), che determina quando si raggiunge convergenza e la manovra termina. I parametri chiave di prestazione calcolati sono il tempo per raggiungere la convergenza, l’impulso totale complessivo (riferito cioè all’intera configurazione e non ai singoli propulsori) e la precisione della manovra (massima velocità angolare o errore sull’assetto). Inoltre, è stata svolta un'analisi di robustezza della sensibilità al posizionamento del centro di massa.
An analysis of attitude control laws and thruster configurations for a deep space CubeSat
PINCA, MATTEO TEODORO
2018/2019
Abstract
CubeSats are a class of miniaturized satellites, originally developed in 1999 for academic purposes. Their importance has grown with time, with several missions involving CubeSats having been developed by space agencies. To control the attitude of a satellite, actuators are needed such as magnetic actuators, but these are not useful in deep-space. Reaction wheels can be used but require an additional actuator for de-saturation. Alternatively, thrusters can be used, but little has been analysed to the most appropriate controls and configurations of thrusters for Cubesats. This thesis deals with the attitude control of a 12U CubeSat, using thrusters. The aim of this work is to assess the performance during detumbling and slew manoeuvre comparing different control laws and thruster configurations. Two kinds of thrusters were investigated: Cold Gas thrusters and Electric thrusters. Different configurations were tested, i.e. different numbers of actuators and different spatial orientations. Two ideal control laws were investigated, and they belong to what is called control allocation: the idea is to map the ideal control on each actuator. First one is a simple Proportional Law, and second one is a Super-Twisting algorithm based on Sliding Mode control. Furthermore, a main part of real control implemented is a Pulse Width Mode control, which states when convergence is reached and the manoeuvre ends. The key performance parameters studied are the time to reach convergence, the Overall Total Impulse (i.e. of the whole configuration, not of the single thruster) and the precision of the manoeuvre (i.e. angular velocity or steady state error evaluated at convergence time). In addition, a robustness analysis of the sensitivity to the positioning of the centre of mass was undertaken.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Pinca.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
4.4 MB
Formato
Adobe PDF
|
4.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153095