Continuos Fiber Manufacturing (CFM) is an innovative additive manufacturing process that allows to 3D print continuos fiber composites by mean of an anthropomorphic robotic arm. Fibers are impregnated with a photoreactive resin and deposited according to an optimized path, obtaining complex geometries, free from the constraints of traditional manufacturing. The aim of this thesis work consists in the research and application of new materials printable with CFM technology. First, a commercial UV-photoreactive resin has been tested to print continuos glass fibers. In addition, a novel solution based on epoxy powder has been developed to print continuos carbon fibers. The UV resin has been characterized initially from the chemical point of view, through spectrometry analysis, to understand the curing mechanism. Then, a dip-type resin bath system has been designed and built to impregnate continuos glass fibers with the resin. The optimal printing parameters have been defined, such as deposition speed and UV LEDs power, afterwards the mechanical properties of the new printed composite have been tested performing tensile and bending tests. The fracture surface and the cross-section morphology have been studied through graphical analysis, while the ratio between the fiber and matrix content within the composite has been investigated by mean of thermogravimetric analysis. Finally, the mechanical properties obtained from the experiemental data have been compared with the ones predicted by theory and with the values obtained from the standard glass fiber composite normally printed with CFM technology. A powder system based on epoxy and a latent curing hardener has been prepared and characterized from the thermal, kinetic and rheological point of view with the purpose to establish a process window to impregnate and print continuos carbon fibers. An impregnation system with hot counter rotating rollers has been designed and built to impregnate the fibers, exploiting the liquid-solid physical transition. A printhead has been specially designed and built to test the printability of the obtained pre-preg and the printing parameters such as temperature, speed and layer height have been identified. A laser system has been mounted on the printhead to pre-heat the layers locally during deposition, by analogy with the Automated Fiber Placement (AFP) process. Simple shapes have been printed with promising results. To fix the shape, a heat treatment has been performed in oven, and the optimal curing parameters have been evaluated.
Continuos Fiber Manufacturing (CFM) è un innovativo processo di manifattura additiva che permette di stampare in 3D compositi a fibra continua mediante l’utilizzo di un braccio robotico. Le fibre vengono impregnate con una resina fotosensibile e depositate secondo traiettorie ottimizzate, ottenendo geometrie complesse, libere dai vincoli della manifattura tradizionale. L’obiettivo del lavoro di tesi consiste nella ricerca e applicazione di nuovi materiali stampabili con tecnologia CFM. In particolare, una resina commerciale UV-fotosensibile è stata testata per stampare fibre continue di vetro. Inoltre, una nuova soluzione basata su polvere epossidica è stata sviluppata per stampare fibre continue di carbonio. La resina UV è stata caratterizzata inizialmente dal punto di vista chimico, con analisi di spettroscopia, per comprenderne il meccanismo di reticolazione. In seguito, un sistema con bagno di impregnazione è stato costruito per impregnare la fibra di vetro con la resina fotosensibile. Sono stati definiti i parametri ottimali di stampa come velocità di deposizione e potenza dei LED UV e, successivamente, il nuovo composito stampato è stato caratterizzato dal punto di vista meccanico, attraverso prove di trazione e flessione. La superficie di frattura e la morfologia di sezione sono state studiate con analisi al micorscopio, mentre il rapporto tra fibra e volume del composito è stato ricavato da analisi termogravimetriche. Infine, le proprietà meccaniche ottenute dai dati sperimentali sono state comparate con quelle predette da modelli teorici e con le prestazioni del composito in fibra di vetro normalmente stampato con tecnologia CFM. Un sistema di polveri composto da epossidica e indurente latente è stato preparato e caratterizzato dal punto di vista termico, cinetico e reologico col fine di individuare una finestra di processo per impregnare e stampare la fibra di carbonio. Un sistema di impregnazione con rulli caldi controrotanti è stato costruito per impregnare le fibre, sfruttando il passaggio di stato liquido-solido. Una testa di stampa è stata appositamente pensata e costruita per testare la stampabilità del pre-impregnato ottenuto e i parametri di stampa come temperatura, velocità e altezza layer sono stati identificati. Un laser è stato montato in testa al robot per preriscaldare localmente i layers durante la deposizione, analogamente a quanto fatto nell’Automated Fiber Placement (AFP). Diverse forme semplici sono state stampate con risultati promettenti. Per fissare la forma, è stato eseguito un trattamento termico in forno e i parametri ottimali di reticolazione sono stati valutati.
Continuous fiber manufacturing : novel solutions to 3D print continuous glass and carbon fiber reinforced thermoset composites
ROCCO, DANIELE
2018/2019
Abstract
Continuos Fiber Manufacturing (CFM) is an innovative additive manufacturing process that allows to 3D print continuos fiber composites by mean of an anthropomorphic robotic arm. Fibers are impregnated with a photoreactive resin and deposited according to an optimized path, obtaining complex geometries, free from the constraints of traditional manufacturing. The aim of this thesis work consists in the research and application of new materials printable with CFM technology. First, a commercial UV-photoreactive resin has been tested to print continuos glass fibers. In addition, a novel solution based on epoxy powder has been developed to print continuos carbon fibers. The UV resin has been characterized initially from the chemical point of view, through spectrometry analysis, to understand the curing mechanism. Then, a dip-type resin bath system has been designed and built to impregnate continuos glass fibers with the resin. The optimal printing parameters have been defined, such as deposition speed and UV LEDs power, afterwards the mechanical properties of the new printed composite have been tested performing tensile and bending tests. The fracture surface and the cross-section morphology have been studied through graphical analysis, while the ratio between the fiber and matrix content within the composite has been investigated by mean of thermogravimetric analysis. Finally, the mechanical properties obtained from the experiemental data have been compared with the ones predicted by theory and with the values obtained from the standard glass fiber composite normally printed with CFM technology. A powder system based on epoxy and a latent curing hardener has been prepared and characterized from the thermal, kinetic and rheological point of view with the purpose to establish a process window to impregnate and print continuos carbon fibers. An impregnation system with hot counter rotating rollers has been designed and built to impregnate the fibers, exploiting the liquid-solid physical transition. A printhead has been specially designed and built to test the printability of the obtained pre-preg and the printing parameters such as temperature, speed and layer height have been identified. A laser system has been mounted on the printhead to pre-heat the layers locally during deposition, by analogy with the Automated Fiber Placement (AFP) process. Simple shapes have been printed with promising results. To fix the shape, a heat treatment has been performed in oven, and the optimal curing parameters have been evaluated.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Rocco.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
7.37 MB
Formato
Adobe PDF
|
7.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153188