The menisci perform several important biomechanical functions and their injuries are very common: they constitute the 15% of knee injuries, and only in the USA approximately 650 000 to 850 000 meniscal-related surgeries are performed each year. Meniscal tears have two main origins, according to which they display different features. Traumatic tears occur mainly in young patients, especially during sport activities, because of an impulsive forced movement. These tears are radially and longitudinally oriented. Degeneration tears are due to the aging process of the biological tissues, therefore they are common among people aged over 50. They are characterized by a horizontal orientation and are more complex. Meniscal tears interfere with the molecular arrangement and prevent menisci to carry out their functions, thus resulting in pain, mechanical instability, osteophyte formation, cartilage degeneration and osteoarthritis. Different strategies are available for the treatment of damaged menisci and the choice is made based on the age of the patient and the location of the tear. Meniscectomy, i.e. the partial or total removal of the torn meniscus, is the most common treatment for the meniscal injuries. Nonetheless, meniscectomized knees are more prone to develop symptomatic osteoarthritis in the long term, compared to the ones provided with meniscus. Therefore, a meniscal replacement is needed. Particular attention has been drawn to permanent synthetic solid implants. A polymer with interesting properties is polycarbonate urethane (PCU), commercialized under the name Bionate, which displays important characteristics, such as biocompatibility, biostability, wear resistance, and a low friction coefficient, which make it suitable for orthopaedic applications. Vrancken et al. developed a PCU anatomically-shaped implant for the total replacement of the medial meniscus, which displays promising results. The lateral meniscus is more mobile and therefore less prone to injury than the medial meniscus, but it carries a higher percentage of the load acting on the ipsilateral compartment. Therefore, the injury and removal of the lateral meniscus can lead to a higher pressure concentration on the tibial cartilage. For this reason, a replacement for the lateral meniscus is necessary as well. The aim of this study is to develop a synthetic anatomically-shaped permanent implant for the replacement of the lateral meniscus and to assess its biomechanical performance. The background of the study consists of the study performed by Mars, which provided the anatomical shape of the lateral meniscus and an insight in the material and fixation technique for the implant. In detail, the implant is intended to be made of an inner core of Bionate 75D and an outer shell of Bionate II 80A, and it is going to be fixated to the knee joint through metallic screws. The implant should relieve pain and restore the ability of the patients to perform physical activities. The shape of the implant was modified in order to obtain a good fit on the tibial plateau and to allow the insertion of the implant in the joint without interfering with the surrounding tissues. According to these demands, a list of requirements was created. The shape modification was performed in Blender (Blender 2.8), using two tibial plateaus as reference. One of them was chosen by an expert surgeon as the average knee among the 10 available at the Orthopaedic Research Laboratory (ORL), whereas the other one was the mean shape of 50 knees that was available online. The implant shape was evaluated in Blender on the remaining 9 knees of the ORL and subsequently on four cadaver knees. The satisfaction of the requirements previously stated was evaluated by the surgeon, who assigned a score between 0 and 1 for each requirement. The cadaver fitting provided a better visualization of the combination between the implant and the tibial plateaus, therefore further modifications were needed. This cycle was repeated four times, until the shape was considered optimal. A FE model was built for the analysis of the implant. The MRI of a donor knee was segmented through Mimics (Mimics 14.0, Materialise, Leuven, Belgium) and the 3D geometry of femur, tibia, cartilage, medial and lateral menisci was obtained. The geometries were then meshed in Hypermesh and imported in Abaqus (Abaqus/CAE 2018, Dassault Systèmes). The material properties were taken from literature. The model was validated though the contact pressures on the tibial cartilage. A compressive load of 1000N in the vertical direction was applied to the femur with the knee in extended position, both in a cadaver experiment and in the FE model, in four different situations: native meniscus, meniscectomy, Bionate 75D and Bionate II 80A. The measurement of the contact pressures in the experiment was performed using Tekscan pressure sensors. The loading was applied to the femur in the experiment through the MTS Testing Rig with a 15kN Load cell (MTS Systems Corporation, Eden Prairie, Minnesota, United States). The implants used in the experiment were 3D printed and needed the characterization of their mechanical properties. For this purpose, tensile tests on 3D printed Bionate were performed and the data were analyzed in Matlab (Matlab R2018b) to obtain the values of stress and strain. These were inserted in Abaqus to model the implant mechanical behaviour. The FE model was used to analyse the mechanical performance of the implant and its influence on the knee biomechanics. A compression load of 1000N was applied to the femur, with the knee in extended position. The implant components were described as injection-moulded, wet, warm at 37°C and EtO (Ethilene Oxide) sterilized, being these the conditions of the implant when inserted in the body. The stresses in the inner core of the implant were compared to the yield stress of Bionate 75D, whereas the stresses in the outer shell were compared to the ultimate tensile strength of Bionate II 80A. The contact pressures on the tibial cartilage were assessed and compared to the pressures obtained in the models with the native meniscus and meniscectomy. The extrusion of the implants outside the joint, i.e. the displacement in the medio-lateral direction, was assessed as well. The optimised shape of the implant was obtained after the four cycles of computational and cadaveric fitting. The resulting implant can be considered suitable to fit the knees of all patients. A FE model was built and validated. The contact pressure maps showed consistent results with the FE model in most cases, even though a mismatch in the values was present. The importance of the implant positioning was highlighted in this phase, in which the implant was found to be located in a non-optimal location and its influence on the tibial cartilage was not as expected. The mechanical assessment of the implant reported the necessity to increase the cross section of the implant, which would otherwise undergo plastic deformation during loading. The contact pressures measured on the tibial cartilage are intermediate between native meniscus and meniscectomy and are distributed below the implant. The contact distribution could be further improved after the enlargement of the cross-section. The extrusion was found to be lower than the maximum allowed. The results obtained in this study suggest that the enlargement of the implant core, in order for it to withstand loads without deforming plastically, is necessary. Yet, its influence on the knee biomechanics is promising. Besides, the importance of the implant positioning has been highlighted. Further analyses will be needed to assess the behaviour of the new implant in more realistic conditions, after which preclinical and clinical trials can be performed.
Il menisco svolge importanti funzioni biomeccaniche e le lesioni a suo carico sono molto comuni. Esse costituiscono il 15% delle lesioni ai danni del ginocchio, e solo negli Stati Uniti vengono effettuate ogni anno approssimativamente da 650 000 a 850 000 operazioni chirurgiche in relazione al menisco. Le lesioni del menisco derivano da due cause principali, a seconda delle quali presentano caratteristiche diverse. Le lesioni traumatiche colpiscono principalmente soggetti giovani, specialmente durante l’attività sportiva, a causa di un movimento impulsivo. Queste lesioni sono orientate radialmente e longitudinalmente. Le lesioni degenerative avvengono a causa del processo degenerativo dei tessuti biologici, pertanto sono diffuse tra i soggetti con più di 50 anni. Sono caratterizzate da un’orientazione orizzontale e sono più complesse. Le lesioni del menisco interferiscono con la sua struttura molecolare e gli impediscono di compiere la propria funzione di distribuzione dei carichi e assorbimento degli urti, provocando dolore, instabilità meccanica, formazione di osteofiti, degenerazione della cartilagine e osteoartrite. Per il trattamento del menisco danneggiato sono disponibili diverse strategie, tra le quali la scelta viene effettuata a seconda dell’età del paziente e della posizione della lesione. La meniscectomia, ossia la rimozione parziale o totale del menisco danneggiato, è il trattamento più comune per le lesioni del menisco. Nonostante ciò, le ginocchia con meniscectomia sono più inclini a sviluppare osteoartrite sintomatica nel lungo termine, rispetto alle ginocchia dotate di menisco. Per questo motivo è necessario un sostituto del menisco. Di recente, sono stati studiati impianti di menisco permanenti, solidi e sintetici. Un polimero con proprietà interessanti è il policarbonato uretano (PCU), commercializzato con il nome di Bionate®, che presenta importanti caratteristiche come ad esempio biocompatibilità, biostabilità, resistenza all’usura, basso coefficiente di attrito, che lo rende adatto ad applicazioni ortopediche. Vrancken et al. hanno sviluppato un impianto per la sostituzione del menisco mediale con forma anatomica, con risultati promettenti. Il menisco laterale è più mobile di quello mediale e quindi meno incline alle lesioni, ma sostiene una percentuale maggiore del carico agente sul proprio compartimento. Di conseguenza, la lesione e la rimozione del menisco laterale possono condurre ad una concentrazione maggiore di pressioni sulla cartilagine tibiale. Per questa ragione, anche la sostituzione del menisco laterale è necessaria. Lo scopo di questo studio è di sviluppare un impianto permanente per la sostituzione di menisco laterale con forma anatomica, e di valutare le sue prestazioni meccaniche. Le informazioni preliminari per questo studio sono costituite dallo studio condotto da Mars, che ha fornito la forma anatomica del menisco laterale e delle informazioni di base sul materiale e la tecnica di fissaggio dell’impianto. Nel dettaglio, l’impianto sarà costituito da una parte centrale di Bionate 75D e da uno strato esterno di Bionate II 80A, e verrà fissato al ginocchio mediante due viti metalliche. L’impianto ha lo scopo di ridurre il dolore e ripristinare l’abilità del paziente di effettuare attività fisica. La forma dell’impianto è stata modificata affinché fosse compatibile con il piatto tibiale e per permettere il suo inserimento nel ginocchio senza interferire con i tessuti circostanti. Una lista di requisiti è stata creata sulla base di queste esigenze. La modifica della forma è stata effettuata in Blender (Blender 2.8) usando due piatti tibiali come riferimento. Uno di essi era stato scelto da un chirurgo esperto come il ginocchio medio tra i 10 disponibili presso l’Orthopaedic Research Laboratory (ORL), mentre l’altro è la forma media di 50 ginocchia disponibile online. La forma dell’impianto è stata valutata in Blender sulle 9 ginocchia rimanenti dell’ORL e successivamente su 4 ginocchia di cadavere. L’adempimento dei requisiti definiti in precedenza è stato valutato dal chirurgo, che ha assegnato un punteggio da 0 a 1 per ogni requisito. Il fitting su cadavere ha permesso una migliore visualizzazione dell’impianto sui piatti tibiali, sottolineando il bisogno di modifiche successive, poi nuovamente valutate con le stesse modalità. Questo ciclo è stato ripetuto quattro volte, prima di ottenere un impianto con forma ottimale. Un modello agli elementi finite è stato costruito per permettere l’analisi computazionale dell’impianto. La risonanza magnetica del ginocchio di un donatore è stata segmentata in Mimics (Mimics 14.0, Materialise, Leuven, Belgium) in modo da ottenere la geometria 3D di femore, tibia, cartilagine, menisco mediale e menisco laterale. Le geometrie ottenute sono state dotate di mesh in Hypermesh e importate in Abaqus (Abaqus/CAE 2018, Dassault Systèmes). Le proprietà dei materiali sono state ottenute dalla letteratura. Il modello è stato validato mediante le pressioni di contatto sul piatto tibiale. Un carico di compressione di 1000N in direzione verticale è stato applicato sul femore, con il ginocchio in completa estensione, sia in un esperimento su cadavere sia nel modello, per quattro situazioni differenti: menisco nativo, meniscectomia, impianto in Bionate 75D e impianto in Bionate II 80A. La misura delle pressioni di contatto nell’esperimento è stata effettuata mediante i sensori di pressione Tekscan. Il carico è stato applicato al femore mediante la macchina MTS con cella di carico a 15kN (MTS Systems Corporation, Eden Prairie, Minnesota, United States). Gli impianti usati nell’esperimento sono stati ottenuti mediante stampa 3D ed è stato necessario caratterizzarne le proprietà meccaniche. Per questo, sono state effettuate prove a trazione su provini di Bionate stampati 3D e i dati sono stati analizzati in Matlab (Matlab R2018b) per ottenere i valori di sforzo e deformazione da inserire in Abaqus per modellare le proprietà meccaniche degli impianti. Il modello agli elementi finiti è stato utilizzato per analizzare le prestazioni meccaniche dell’impianto e i suoi effetti sulla biomeccanica del ginocchio. Un carico di compressione di 1000N è stato applicato al femore con il ginocchio in completa estensione. Le due componenti dell’impianto sono state modellate come ottenute mediante stampaggio a iniezione, umide, a 37°C e sterilizzate mediante ossido di etilene, essendo queste le condizioni di utilizzo dell’impianto inserito nel corpo. Gli sforzi nella parte centrale dell’impianto sono stati confrontati con lo snervamento del Bionate 75D, mentre gli sforzi nello strato esterno sono stati confrontati con lo sforzo a rottura del Bionate II 80A. Le pressioni di contatto sulla cartilagine tibiale sono state confrontate con le pressioni ottenute nei modelli con menisco nativo e meniscectomia. Inoltre, è stata valutata l’estrusione dell’impianto fuori dall’articolazione, cioè lo spostamento nella direzione medio-laterale. La forma ottimizzata dell’impianto è stata ottenuta dopo quattro cicli iterativi di fitting computazionale e su cadavere. L’impianto risultante può essere considerato adatto alle ginocchia di tutti i pazienti. Un modello agli elementi finiti è stato costruito e validato. Le mappe delle pressioni di contatto hanno mostrato risultati consistenti con quelli del modello nella maggior parte dei casi, sebbene una differenza nei valori fosse presente. In questa fase è stata sottolineata l’importanza del posizionamento dell’impianto. L’impianto, infatti, è risultato essere in una posizione non ottimale, e di conseguenza la sua influenza sul ginocchio era diversa dal previsto. La valutazione meccanica dell’impianto ha segnalato la necessità di incrementare la sezione dell’impianto, che altrimenti andrebbe incontro a deformazione plastica durante l’utilizzo. Le pressioni di contatto massime misurate sulla cartilagine tibiale sono risultate intermedie tra il menisco nativo e la meniscectomia. La distribuzione del contatto potrebbe essere migliorata ulteriormente dopo l’allargamento della sezione trasversale. L’estrusione è risultata inferiore al valore massimo accettabile. I risultati ottenuti in questo studio suggeriscono che l’allargamento della parte centrale dell’impianto è necessario per sopportare i carichi senza deformarsi plasticamente. Nonostante ciò, gli effetti dell’impianto sulla biomeccanica del ginocchio sono promettenti. Inoltre, è stata sottolineata l’importanza del corretto posizionamento dell’impianto. Analisi future saranno necessarie per valutare le prestazioni dell’impianto in condizioni più realistiche, dopodiché verranno effettuati test preclinici e clinici.
Development and biomechanical finite element analysis of an anatomically-shaped lateral meniscus implant
GIRONI, PATRIZIA
2018/2019
Abstract
The menisci perform several important biomechanical functions and their injuries are very common: they constitute the 15% of knee injuries, and only in the USA approximately 650 000 to 850 000 meniscal-related surgeries are performed each year. Meniscal tears have two main origins, according to which they display different features. Traumatic tears occur mainly in young patients, especially during sport activities, because of an impulsive forced movement. These tears are radially and longitudinally oriented. Degeneration tears are due to the aging process of the biological tissues, therefore they are common among people aged over 50. They are characterized by a horizontal orientation and are more complex. Meniscal tears interfere with the molecular arrangement and prevent menisci to carry out their functions, thus resulting in pain, mechanical instability, osteophyte formation, cartilage degeneration and osteoarthritis. Different strategies are available for the treatment of damaged menisci and the choice is made based on the age of the patient and the location of the tear. Meniscectomy, i.e. the partial or total removal of the torn meniscus, is the most common treatment for the meniscal injuries. Nonetheless, meniscectomized knees are more prone to develop symptomatic osteoarthritis in the long term, compared to the ones provided with meniscus. Therefore, a meniscal replacement is needed. Particular attention has been drawn to permanent synthetic solid implants. A polymer with interesting properties is polycarbonate urethane (PCU), commercialized under the name Bionate, which displays important characteristics, such as biocompatibility, biostability, wear resistance, and a low friction coefficient, which make it suitable for orthopaedic applications. Vrancken et al. developed a PCU anatomically-shaped implant for the total replacement of the medial meniscus, which displays promising results. The lateral meniscus is more mobile and therefore less prone to injury than the medial meniscus, but it carries a higher percentage of the load acting on the ipsilateral compartment. Therefore, the injury and removal of the lateral meniscus can lead to a higher pressure concentration on the tibial cartilage. For this reason, a replacement for the lateral meniscus is necessary as well. The aim of this study is to develop a synthetic anatomically-shaped permanent implant for the replacement of the lateral meniscus and to assess its biomechanical performance. The background of the study consists of the study performed by Mars, which provided the anatomical shape of the lateral meniscus and an insight in the material and fixation technique for the implant. In detail, the implant is intended to be made of an inner core of Bionate 75D and an outer shell of Bionate II 80A, and it is going to be fixated to the knee joint through metallic screws. The implant should relieve pain and restore the ability of the patients to perform physical activities. The shape of the implant was modified in order to obtain a good fit on the tibial plateau and to allow the insertion of the implant in the joint without interfering with the surrounding tissues. According to these demands, a list of requirements was created. The shape modification was performed in Blender (Blender 2.8), using two tibial plateaus as reference. One of them was chosen by an expert surgeon as the average knee among the 10 available at the Orthopaedic Research Laboratory (ORL), whereas the other one was the mean shape of 50 knees that was available online. The implant shape was evaluated in Blender on the remaining 9 knees of the ORL and subsequently on four cadaver knees. The satisfaction of the requirements previously stated was evaluated by the surgeon, who assigned a score between 0 and 1 for each requirement. The cadaver fitting provided a better visualization of the combination between the implant and the tibial plateaus, therefore further modifications were needed. This cycle was repeated four times, until the shape was considered optimal. A FE model was built for the analysis of the implant. The MRI of a donor knee was segmented through Mimics (Mimics 14.0, Materialise, Leuven, Belgium) and the 3D geometry of femur, tibia, cartilage, medial and lateral menisci was obtained. The geometries were then meshed in Hypermesh and imported in Abaqus (Abaqus/CAE 2018, Dassault Systèmes). The material properties were taken from literature. The model was validated though the contact pressures on the tibial cartilage. A compressive load of 1000N in the vertical direction was applied to the femur with the knee in extended position, both in a cadaver experiment and in the FE model, in four different situations: native meniscus, meniscectomy, Bionate 75D and Bionate II 80A. The measurement of the contact pressures in the experiment was performed using Tekscan pressure sensors. The loading was applied to the femur in the experiment through the MTS Testing Rig with a 15kN Load cell (MTS Systems Corporation, Eden Prairie, Minnesota, United States). The implants used in the experiment were 3D printed and needed the characterization of their mechanical properties. For this purpose, tensile tests on 3D printed Bionate were performed and the data were analyzed in Matlab (Matlab R2018b) to obtain the values of stress and strain. These were inserted in Abaqus to model the implant mechanical behaviour. The FE model was used to analyse the mechanical performance of the implant and its influence on the knee biomechanics. A compression load of 1000N was applied to the femur, with the knee in extended position. The implant components were described as injection-moulded, wet, warm at 37°C and EtO (Ethilene Oxide) sterilized, being these the conditions of the implant when inserted in the body. The stresses in the inner core of the implant were compared to the yield stress of Bionate 75D, whereas the stresses in the outer shell were compared to the ultimate tensile strength of Bionate II 80A. The contact pressures on the tibial cartilage were assessed and compared to the pressures obtained in the models with the native meniscus and meniscectomy. The extrusion of the implants outside the joint, i.e. the displacement in the medio-lateral direction, was assessed as well. The optimised shape of the implant was obtained after the four cycles of computational and cadaveric fitting. The resulting implant can be considered suitable to fit the knees of all patients. A FE model was built and validated. The contact pressure maps showed consistent results with the FE model in most cases, even though a mismatch in the values was present. The importance of the implant positioning was highlighted in this phase, in which the implant was found to be located in a non-optimal location and its influence on the tibial cartilage was not as expected. The mechanical assessment of the implant reported the necessity to increase the cross section of the implant, which would otherwise undergo plastic deformation during loading. The contact pressures measured on the tibial cartilage are intermediate between native meniscus and meniscectomy and are distributed below the implant. The contact distribution could be further improved after the enlargement of the cross-section. The extrusion was found to be lower than the maximum allowed. The results obtained in this study suggest that the enlargement of the implant core, in order for it to withstand loads without deforming plastically, is necessary. Yet, its influence on the knee biomechanics is promising. Besides, the importance of the implant positioning has been highlighted. Further analyses will be needed to assess the behaviour of the new implant in more realistic conditions, after which preclinical and clinical trials can be performed.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Gironi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
8.02 MB
Formato
Adobe PDF
|
8.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153275