Nowadays, acute and chronic liver diseases are prevalent worldwide, causing significant morbidity and mortality. The gold standard treatment for end-stage liver disease is transplantation, but it is associated with severe limitations, such as organ availability and immune-suppressive therapy. Therefore, new innovative solutions are required for liver replacement. Tissue Engineering offers a valid and innovative alternative since it aims to create in vitro functional substitutes, reducing the waiting list and creating a immunologically compatible organ. In this scenario, this work describes the development of a new bioreactor able to support the generation of functional humanized 3D liver unit for transplantation purposes, combining a decellularized scaffold, parenchymal and non-parenchymal cells and chemical and mechanical signals. A customized bioreactor was designed, through the software SolidWorks, with a “keyhole” shape, in order to house a decellularized mouse liver scaffold and to perfuse medium through its vascular system. Moreover, it guarantees other important requirements such as to minimum priming volume of the medium inside the chamber, an easy transport and assembling under the safety cabinet. Together with the choice of the structure, an accurate selection of the materials was done on the basis of their biocompatibility, cost, workability and optical transparency. Before proceeding with biological experiments, the realized bioreactor was tested to value the efficacy of the system through hydraulic seal and the maintenance of sterility and positive outcomes were obtained. A perfusion decellularization process was used to generate a decellularized mouse liver scaffold, which showed preservation of the vasculature network and architecture of the native organ and absence of nucleic and cellular materials. This scaffold was seeded with human iPSC-derived immature hepatocyte-like cells, through the parenchyma, and with ETV-2 induced endothelial cells, through the portal vein. The analyses, conducted on the recellularized livers, showed that endothelial cells repopulated very well the lumen of the preserved native vasculature, and the iPSCs-derived immature cells reached mature state inside the decellularized matrix, demonstrating the ability of bioreactor to support the bioengineering of a functional liver unit. These promising results encouraged the development of another bioreactor for future experiments.
Oggigiorno, le malattie di tipo acuto e cronico che colpiscono il fegato sono molto prevalenti in tutto il mondo, causando un alto tasso di mortalità. Nonostante, dal punto di vista terapeutico, il trapianto di fegato sia il gold standard per le patologie epatiche in stadio avanzato-terminale, questo approccio chirurgico é caratterizzato da due gravi limitazioni: la ridotta disponibilità di organi e la necessità di una costante terapia immunosoppressiva. Risulta quindi di vitale importanza lo sviluppo di nuove strategie terapeutiche per le malattie epatiche. Una possibile via è l’Ingegneria dei Tessuti, che mira a generare in vitro sostituti funzionali, per poter così ridurre la lista di attesa ai trapianti. In questo scenario, questo lavoro di tesi descrive lo sviluppo di un nuovo bioreattore che sia capace di supportare la generazione di un’unità funzionale 3D di fegato umano ai fine del trapianto, combinando uno scaffold decellularizzato, cellule parenchimali e nonparenchimali e segnali chimici e meccanici. Un bioreattore ad hoc è stato progettato, attraverso l’uso del software SolidWorks, con una camera a forma di serratura, al fine di accogliere al suo interno uno scaffold di fegato di topo decellularizzato e per perfondere il medium attraverso il suo sistema vascolare. Inoltre, questo bioreattore garantisce altre importante specifiche, come un minimo volume di primimg del medium dentro la camera e un facile trasporto e assemblaggio sotto cappa biologica. Insieme alla scelta della struttura del bioreattore, una consapevole selezione dei materiali da impiegare è stata fatta sulla base della loro biocompatibilità, costo, lavorabilità alle macchine e trasparenza ottica. Prima di procedere con gli esperimenti biologici, il bioreattore realizzato è stato testato per valutare la sua tenuta idraulica e il mantenimento della sterilità all’interno dell’ambiente di coltura, ottenendo al loro termine risultati positivi. Lo scaffold utilizzato per lo sviluppo del tessuto 3D bioingegnerizzato è stato ottenuto tramite un processo di decellularizzazione per perfusione su fegato di topo, da cui fu possibile rimuovere la componente cellulare conservando la rete vascolare e l’architettura della matrice extracellulare dell’organo nativo. Tale scaffold è stato seminato nel parenchima con iPSC-derived immature hepatocyte-like cells di origine umana, e nella vascolatura con cellule endoteliale ETV-2. Analisi, condotte sui fegati ricellularizzati, hanno mostrato la capacità del bioreattore a supportare la bio-ingegnerizzazione di un unità funzionale di fegato. Questi risultati promettenti hanno incoraggiato lo sviluppo di un ulteriore bioreattore da usare per futuri esperimenti.
Development of novel perfusion bioreactors for the engineering of a universal liver
DI GRAVINA, GIULIA MARIA
2018/2019
Abstract
Nowadays, acute and chronic liver diseases are prevalent worldwide, causing significant morbidity and mortality. The gold standard treatment for end-stage liver disease is transplantation, but it is associated with severe limitations, such as organ availability and immune-suppressive therapy. Therefore, new innovative solutions are required for liver replacement. Tissue Engineering offers a valid and innovative alternative since it aims to create in vitro functional substitutes, reducing the waiting list and creating a immunologically compatible organ. In this scenario, this work describes the development of a new bioreactor able to support the generation of functional humanized 3D liver unit for transplantation purposes, combining a decellularized scaffold, parenchymal and non-parenchymal cells and chemical and mechanical signals. A customized bioreactor was designed, through the software SolidWorks, with a “keyhole” shape, in order to house a decellularized mouse liver scaffold and to perfuse medium through its vascular system. Moreover, it guarantees other important requirements such as to minimum priming volume of the medium inside the chamber, an easy transport and assembling under the safety cabinet. Together with the choice of the structure, an accurate selection of the materials was done on the basis of their biocompatibility, cost, workability and optical transparency. Before proceeding with biological experiments, the realized bioreactor was tested to value the efficacy of the system through hydraulic seal and the maintenance of sterility and positive outcomes were obtained. A perfusion decellularization process was used to generate a decellularized mouse liver scaffold, which showed preservation of the vasculature network and architecture of the native organ and absence of nucleic and cellular materials. This scaffold was seeded with human iPSC-derived immature hepatocyte-like cells, through the parenchyma, and with ETV-2 induced endothelial cells, through the portal vein. The analyses, conducted on the recellularized livers, showed that endothelial cells repopulated very well the lumen of the preserved native vasculature, and the iPSCs-derived immature cells reached mature state inside the decellularized matrix, demonstrating the ability of bioreactor to support the bioengineering of a functional liver unit. These promising results encouraged the development of another bioreactor for future experiments.File | Dimensione | Formato | |
---|---|---|---|
29_04- GiuliaMDiGravina-TM.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
7.43 MB
Formato
Adobe PDF
|
7.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153298