The thesis deals with three aspects from the experimental point of view in the context of modern technologies for seismic protection of buildings, in particular seismic isolation and energy dissipation by elastomeric devices: characterization of elastomeric compounds, dependence of the shear properties of isolators on the compressive load and reliability of energy dissipation devices. The first objective is the characterization of three commercial elastomeric compounds, assessing their suitability, by European standard EN 15129:2009 "Anti-Seismic devices", for their use in seismic protection devices. The experimental campaign allowed to validate the compounds (classified according to the hardness class in Normal, Soft and Hard) and to find relationships between the construction parameters (shear modulus and damping coefficient) and environmental and load conditions. In particular, a decrease in the shear modulus and damping may be caused by an increase in the amplitude of deformation, temperature or number of cycles to which the test is subjected. After an aging process, the shear modulus increases, while the damping coefficient decreases and an increase in frequency determines a decrease in the damping coefficient alone. Restrictions must be imposed in terms of use: Soft and Normal compounds have a temperature of use ranging from -20 degrees Celsius to 40 degrees Celsius, whereas Hard compounds can be used for temperatures between -15 and 40 degrees Celsius and for limited periods of use. Subsequently, tests were conducted on small-scale models of elastomeric bearings, according to experimental procedures developed at the Polytechnic University of Milan, under increasing compression loads (from 0.5 MPa to 24 MPa) which produce a rise in the shear modulus and damping. The standard allows the design characteristics of the elastomeric mixture used in the isolators through tests conducted on samples subject to pure cutting, without applying any compression force. The study showed that it is essential to consider the axial load for a correct characterization of the elastomeric compounds. The elastomeric compounds characterized in the first part of the thesis are used in viscoelastic energy dissipation devices whose reliability is tested according to the standard. The devices belong to the category of displacement dependent devices, linear devices for the Normal and Soft, while not linear devices for the Hard. In addition, the devices have stable behaviour under cyclic load. The dynamic parameters are compared with the counterparts obtained from the characterization tests: it is noted that for the shear modulus, the increase in the deformation amplitude leads to a decrease in the value, while for damping an opposite trend is observed.
Nella tesi vengono affrontati dal punto di vista sperimentale tre aspetti appartenenti al contesto delle moderne tecnologie per la protezione sismica degli edifici, in particolare isolamento sismico e dissipazione di energia mediante dispositivi elastomerici: caratterizzazione delle mescole, dipendenza dal carico di compressione delle proprietà a taglio degli isolatori e affidabilità dei dispositivi di dissipazione di energia. Il primo obiettivo è la caratterizzazione di tre mescole elastomeriche commerciali, valutandone l’idoneità, mediante norma Europea EN 15129:2009 “Dispositivi antisismici”, per l’uso nei dispositivi di protezione sismica. La campagna sperimentale ha permesso di validare le mescole (classificate secondo la classe di durezza in Normal, Soft e Hard) e di trovare relazioni tra i parametri costruttivi (modulo a taglio e coefficiente di smorzamento) e le condizioni ambientali e di carico. In particolare, è stato trovato che una diminuzione del modulo a taglio e dello smorzamento può essere provocata da un aumento dell’ampiezza di deformazione, della temperatura o del numero di cicli a cui è soggetta la prova. Dopo un processo di invecchiamento il modulo a taglio incrementa di valore, mentre il coefficiente di smorzamento diminuisce e l’aumento di frequenza comporta solo una diminuzione del coefficiente di smorzamento. Bisogna successivamente imporre delle restrizioni in termini di utilizzo: le mescole Soft e Normal hanno una temperatura di utilizzo che varia da -20°C a +40°C; mentre la mescola Hard può essere usata per temperature comprese tra -15°C e +40°C e periodi limitati di utilizzo. Successivamente sono state condotte prove su modelli in scala ridotta di isolatori elastomerici, secondo procedure sperimentali sviluppate presso il Politecnico di Milano, sotto carichi di compressione crescenti (da 0.5 MPa a 24 MPa) che producono un aumento del modulo a taglio e dello smorzamento. La normativa permette di determinare le caratteristiche di progetto della mescola elastomerica utilizzata negli isolatori attraverso prove condotte su campioni soggetti a taglio puro, senza applicazione di nessuna forza di compressione. Dallo studio risulta indispensabile tener conto del carico assiale per una corretta caratterizzazione delle mescole. Le mescole caratterizzate nella prima parte della tesi vengono utilizzate in dispositivi a dissipazione di energia di tipo visco-elastico la cui affidabilità viene testata secondo normativa. I dispositivi fanno parte della categoria di dispositivi dipendenti dallo spostamento, lineari per le mescole Normal e Soft, mentre non lineare nella mescola Hard. Inoltre, i dispositivi hanno un comportamento stabile sotto carico ciclico. I parametri dinamici vengono confrontati con i corrispettivi ottenuti dalle prove di caratterizzazione: si osserva che per il modulo a taglio, l’aumento dell’ampiezza di deformazione comporta una diminuzione del valore, mentre per lo smorzamento si ha un andamento opposto.
Aspetti sperimentali nella caratterizzazione di mescole elastomeriche per isolatori e dissipatori sismici
PISANI, ILARIA
2018/2019
Abstract
The thesis deals with three aspects from the experimental point of view in the context of modern technologies for seismic protection of buildings, in particular seismic isolation and energy dissipation by elastomeric devices: characterization of elastomeric compounds, dependence of the shear properties of isolators on the compressive load and reliability of energy dissipation devices. The first objective is the characterization of three commercial elastomeric compounds, assessing their suitability, by European standard EN 15129:2009 "Anti-Seismic devices", for their use in seismic protection devices. The experimental campaign allowed to validate the compounds (classified according to the hardness class in Normal, Soft and Hard) and to find relationships between the construction parameters (shear modulus and damping coefficient) and environmental and load conditions. In particular, a decrease in the shear modulus and damping may be caused by an increase in the amplitude of deformation, temperature or number of cycles to which the test is subjected. After an aging process, the shear modulus increases, while the damping coefficient decreases and an increase in frequency determines a decrease in the damping coefficient alone. Restrictions must be imposed in terms of use: Soft and Normal compounds have a temperature of use ranging from -20 degrees Celsius to 40 degrees Celsius, whereas Hard compounds can be used for temperatures between -15 and 40 degrees Celsius and for limited periods of use. Subsequently, tests were conducted on small-scale models of elastomeric bearings, according to experimental procedures developed at the Polytechnic University of Milan, under increasing compression loads (from 0.5 MPa to 24 MPa) which produce a rise in the shear modulus and damping. The standard allows the design characteristics of the elastomeric mixture used in the isolators through tests conducted on samples subject to pure cutting, without applying any compression force. The study showed that it is essential to consider the axial load for a correct characterization of the elastomeric compounds. The elastomeric compounds characterized in the first part of the thesis are used in viscoelastic energy dissipation devices whose reliability is tested according to the standard. The devices belong to the category of displacement dependent devices, linear devices for the Normal and Soft, while not linear devices for the Hard. In addition, the devices have stable behaviour under cyclic load. The dynamic parameters are compared with the counterparts obtained from the characterization tests: it is noted that for the shear modulus, the increase in the deformation amplitude leads to a decrease in the value, while for damping an opposite trend is observed.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Pisani.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
13.19 MB
Formato
Adobe PDF
|
13.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153314