Bioresorbable Vascular Scaffolds (BVSs) are the latest innovation of percutaneous coronary intervention. These stents are made of polymeric materials which dissolve gradually after having performed a healing action on the stenotic vessel. From literature, finite element method results an effective tool for the study of these medical devices and, for this reason, this kind of analysis needs to be performed on BVSs. The aim of this thesis is to elaborate a computational model of an existing BVS with a material able to capture the polymeric viscous properties and to calibrate it on the basis of different experimental tests (free expansion, traction, crush and recrimping) performed on the real devices. To achieve this objective, finite element simulations replicating experimental tests have been carried out implying also the realization of a model of the elastomeric balloon. Finally, confined deployment computational simulations have been performed in order to verify the reliability of the model in the context of its real use. This study proves the possibility of implementing an effective in-silico model starting from experiments performed directly on the device since a good correlation between computational results and real behaviour has been found.
Gli scaffold vascolari bioriassorbibili (BVS) sono l’ultima innovazione dell’interventistica coronarica percutanea. Questi stent sono costituiti da materiali polimerici che vengono dissolti gradualmente dopo aver esercitato un’azione benefica nei confronti dell’arteria stenotica. Dalla letteratura il metodo a elementi finiti emerge come uno strumento efficace per lo studio dei device medicali e, per questo motivo, questo tipo di analisi deve essere eseguito anche sui BVS. Lo scopo della presente tesi è di elaborare un modello computazionale di un BVS esistente con un materiale in grado di descrivere le proprietà viscose tipiche dei polimeri e di calibrarlo sulla base di diverse prove sperimentali (espansioni libere, trazioni, crush e recrimping) svolte sugli stent reali. Per fare questo, sono state necessarie delle simulazioni agli elementi finiti replicanti gli esperimenti che implicano la realizzazione di un modello per il pallone. Infine, sono state svolte anche simulazioni di apertura confinata per verificare l’affidabilità del modello nel suo reale contesto di utilizzo. Questo studio dimostra la possibilità di implementare un modello efficace partendo da prove svolte direttamente sui device poiché è stata trovata una buona correlazione tra i dati sperimentali e computazionali.
Implementation and calibration of a realistic computational model of a new BVS on the basis of experimental tests on device samples
HOSSAIN, DIPOK;ISELLA, BENEDETTA
2018/2019
Abstract
Bioresorbable Vascular Scaffolds (BVSs) are the latest innovation of percutaneous coronary intervention. These stents are made of polymeric materials which dissolve gradually after having performed a healing action on the stenotic vessel. From literature, finite element method results an effective tool for the study of these medical devices and, for this reason, this kind of analysis needs to be performed on BVSs. The aim of this thesis is to elaborate a computational model of an existing BVS with a material able to capture the polymeric viscous properties and to calibrate it on the basis of different experimental tests (free expansion, traction, crush and recrimping) performed on the real devices. To achieve this objective, finite element simulations replicating experimental tests have been carried out implying also the realization of a model of the elastomeric balloon. Finally, confined deployment computational simulations have been performed in order to verify the reliability of the model in the context of its real use. This study proves the possibility of implementing an effective in-silico model starting from experiments performed directly on the device since a good correlation between computational results and real behaviour has been found.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Hossain_Isella_2018-2019.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
49.59 MB
Formato
Adobe PDF
|
49.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153350