Throughout recent years, a true revolution has taken place in the medical-pharmaceutical sector. Previously, the attention of the scientific community was focused on the continuous discovery of new therapeutic agents; now, research is increasingly aimed at the development of innovative delivery systems able to enhance the efficiency of pre-existing drugs and simultaneously decrease their side-effects. In particular, an increasing interest has been seen in the development of new devices or formulations which allow transport of a drug exclusively towards an affected area with the ability to control the rate of release. With this research, we aim to continue Albano’s and Gaibotti’s work, which focused precisely on the creation of an innovative controlled drug release system. The idea behind the project was a 3D-printed magnetic micro-device, coated with a hydrogel material to which the drug was chemically linked. In this way, the device could be driven towards the targeted organ or tissue through the simple usage of an external magnetic field; meanwhile, the drug release could be controlled by subjecting the device to a different environmental pH, cleaving the chemical link between the drug and the hydrogel carrier. Nevertheless, the process of chemical functionalization on a large scale would be both time-consuming and extremely expensive. Moreover, the effectiveness and the composition of the drug itself could be altered by the chemical reactions involved in the procedure. Therefore, along the line of this study, this work focuses on two main goals: • Improving both the ease of magnetic actualization of the micro-devices and the adhesion and load-bearing capacity of the hydrogel • Identifying another methodology to guarantee an extended or controlled diffusion of the drug out from the gel matrix, satisfying constraints of cost, simplicity of procedure, reproducibility and compatibility with in vivo application The first goal was accomplished by completely redefining the geometry of the basic micro-device, completely different from that which was used in the past work. The control of drug release over time was achieved by applying the Layer-by-Layer (LbL) approach. This technique consists in coating the surface of the alginate hydrogel with an alternating sequence of layers of opposite charged polyelectrolytes in order to create a protective barrier that reduces the release rate. Our work was therefore centered on determining the best pair of opposite charged materials to be used in this drug delivery application. At last, release and magnetic actuation tests were carried out to certify the efficiency and practicality of the developed system. In particular, thanks to the collaboration with the ETH University of Zürich, it was possible to evaluate the effect of the coating on the mobility of the micro-devices by using OctoMag technology.

Negli ultimi anni il settore medico farmaceutico è stato luogo di una vera e propria rivoluzione. Se prima l’attenzione della industria farmaceutica era focalizzata sulla continua ricerca di nuovi farmaci, ora ci si sta sempre più spostando verso la realizzazione di sistemi di rilascio innovativi, in grado di aumentare l’efficacia e ridurre gli effetti collaterali di farmaci già in commercio. In particolare, vi è un crescente interesse nello sviluppo di dispositivi o formulazioni che permettano di trasportare il farmaco in modo selettivo nelle zone affette dalla malattia e ivi controllarne la velocità di rilascio. Con questa ricerca si vuole proporre una continuazione del lavoro svolto da Albano e Gaibotti, incentrato proprio sulla realizzazione di un innovativo sistema di rilascio controllato. L’idea alla base del progetto era quella di rivestire dei microdispositivi magnetici stampati in 3D con un idrogel a cui veniva legato chimicamente un farmaco. In questo modo il dispositivo può essere indirizzato verso l’organo o il tessuto bersaglio mediante la semplice applicazione di un campo magnetico esterno; mentre il rilascio del farmaco può essere controllato agendo sulla integrità del legame con la matrice tramite la variazione di una condizione ambientale, il pH in questo caso. Tuttavia, una funzionalizzazione chimica di un farmaco, se riprodotta a livello industriale, risulta essere laboriosa in termini di tempo, costi e soggetta a restrizioni di tipo regolatorio, in quanto, l’efficacia e la composizione dello stesso farmaco possono essere alterati dalle reazioni chimiche coinvolte. Pertanto, partendo dai risultati di tale progetto, il presente lavoro è stato incentrato sullo sviluppo di due obbiettivi: • Miglioramento sia della facilità di attuazione magnetica dei microdispositivi sia della adesione e capacità di carico dell’idrogel su tali strutture di base • Individuazione di un metodo economico, di facile applicazione e riproducibile in grado di conseguire un rilascio prolungato/controllato nel tempo perfettamente compatibile con l’applicazione in vivo Il primo obbiettivo è stato conseguito mediante l’impiego di una geometria dei microdispositivi di base completamente diversa da quella usata in precedenza. Il prolungamento/controllo del rilascio del medicinale è stato conseguito invece mediante l’applicazione dell’approccio layer-by-layer (LbL). Tale tecnica consiste nel rivestire la superfice dell’idrogel di alginato con una sequenza alternata di strati di polielettroliti a carica opposta in modo da creare una barriera che riduca la velocità di rilascio. Il nostro lavoro si è quindi incentrato nella determinazione dei migliori materiali da utilizzare in tale applicazione. Test di rilascio e di attuazione magnetica sono stati poi effettuati per confermare l’efficienza e la praticità del sistema sviluppato. In particolare, grazie alla collaborazione con l’Università ETH di Zurigo, è stato possibile valutare l'effetto del rivestimento sulla mobilità dei microdispositivi mediante l’impiego della tecnologia OctoMag.

3D integration of drug-hydrogel conjugates on magnetically driven smart microtransporters

PERUGINI, RICCARDO
2018/2019

Abstract

Throughout recent years, a true revolution has taken place in the medical-pharmaceutical sector. Previously, the attention of the scientific community was focused on the continuous discovery of new therapeutic agents; now, research is increasingly aimed at the development of innovative delivery systems able to enhance the efficiency of pre-existing drugs and simultaneously decrease their side-effects. In particular, an increasing interest has been seen in the development of new devices or formulations which allow transport of a drug exclusively towards an affected area with the ability to control the rate of release. With this research, we aim to continue Albano’s and Gaibotti’s work, which focused precisely on the creation of an innovative controlled drug release system. The idea behind the project was a 3D-printed magnetic micro-device, coated with a hydrogel material to which the drug was chemically linked. In this way, the device could be driven towards the targeted organ or tissue through the simple usage of an external magnetic field; meanwhile, the drug release could be controlled by subjecting the device to a different environmental pH, cleaving the chemical link between the drug and the hydrogel carrier. Nevertheless, the process of chemical functionalization on a large scale would be both time-consuming and extremely expensive. Moreover, the effectiveness and the composition of the drug itself could be altered by the chemical reactions involved in the procedure. Therefore, along the line of this study, this work focuses on two main goals: • Improving both the ease of magnetic actualization of the micro-devices and the adhesion and load-bearing capacity of the hydrogel • Identifying another methodology to guarantee an extended or controlled diffusion of the drug out from the gel matrix, satisfying constraints of cost, simplicity of procedure, reproducibility and compatibility with in vivo application The first goal was accomplished by completely redefining the geometry of the basic micro-device, completely different from that which was used in the past work. The control of drug release over time was achieved by applying the Layer-by-Layer (LbL) approach. This technique consists in coating the surface of the alginate hydrogel with an alternating sequence of layers of opposite charged polyelectrolytes in order to create a protective barrier that reduces the release rate. Our work was therefore centered on determining the best pair of opposite charged materials to be used in this drug delivery application. At last, release and magnetic actuation tests were carried out to certify the efficiency and practicality of the developed system. In particular, thanks to the collaboration with the ETH University of Zürich, it was possible to evaluate the effect of the coating on the mobility of the micro-devices by using OctoMag technology.
BUTLER, BRENDAN
PIZZETTI, FABIO
ROSSETTI, ARIANNA
ING - Scuola di Ingegneria Industriale e dell'Informazione
29-apr-2020
2018/2019
Negli ultimi anni il settore medico farmaceutico è stato luogo di una vera e propria rivoluzione. Se prima l’attenzione della industria farmaceutica era focalizzata sulla continua ricerca di nuovi farmaci, ora ci si sta sempre più spostando verso la realizzazione di sistemi di rilascio innovativi, in grado di aumentare l’efficacia e ridurre gli effetti collaterali di farmaci già in commercio. In particolare, vi è un crescente interesse nello sviluppo di dispositivi o formulazioni che permettano di trasportare il farmaco in modo selettivo nelle zone affette dalla malattia e ivi controllarne la velocità di rilascio. Con questa ricerca si vuole proporre una continuazione del lavoro svolto da Albano e Gaibotti, incentrato proprio sulla realizzazione di un innovativo sistema di rilascio controllato. L’idea alla base del progetto era quella di rivestire dei microdispositivi magnetici stampati in 3D con un idrogel a cui veniva legato chimicamente un farmaco. In questo modo il dispositivo può essere indirizzato verso l’organo o il tessuto bersaglio mediante la semplice applicazione di un campo magnetico esterno; mentre il rilascio del farmaco può essere controllato agendo sulla integrità del legame con la matrice tramite la variazione di una condizione ambientale, il pH in questo caso. Tuttavia, una funzionalizzazione chimica di un farmaco, se riprodotta a livello industriale, risulta essere laboriosa in termini di tempo, costi e soggetta a restrizioni di tipo regolatorio, in quanto, l’efficacia e la composizione dello stesso farmaco possono essere alterati dalle reazioni chimiche coinvolte. Pertanto, partendo dai risultati di tale progetto, il presente lavoro è stato incentrato sullo sviluppo di due obbiettivi: • Miglioramento sia della facilità di attuazione magnetica dei microdispositivi sia della adesione e capacità di carico dell’idrogel su tali strutture di base • Individuazione di un metodo economico, di facile applicazione e riproducibile in grado di conseguire un rilascio prolungato/controllato nel tempo perfettamente compatibile con l’applicazione in vivo Il primo obbiettivo è stato conseguito mediante l’impiego di una geometria dei microdispositivi di base completamente diversa da quella usata in precedenza. Il prolungamento/controllo del rilascio del medicinale è stato conseguito invece mediante l’applicazione dell’approccio layer-by-layer (LbL). Tale tecnica consiste nel rivestire la superfice dell’idrogel di alginato con una sequenza alternata di strati di polielettroliti a carica opposta in modo da creare una barriera che riduca la velocità di rilascio. Il nostro lavoro si è quindi incentrato nella determinazione dei migliori materiali da utilizzare in tale applicazione. Test di rilascio e di attuazione magnetica sono stati poi effettuati per confermare l’efficienza e la praticità del sistema sviluppato. In particolare, grazie alla collaborazione con l’Università ETH di Zurigo, è stato possibile valutare l'effetto del rivestimento sulla mobilità dei microdispositivi mediante l’impiego della tecnologia OctoMag.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
TESI RICCARDO PERUGINI UFFICIALE.pdf

accessibile in internet solo dagli utenti autorizzati

Descrizione: testo della tesi
Dimensione 49.73 MB
Formato Adobe PDF
49.73 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/153363