In the last decades, the dramatic scenario framed by the climate change has set a drastic shift in technological research. From the industrial point of view, the energetic efficiency and the environmental footprint of a device have become the most relevant aspects in its way to commercialization, together with its performances and its economic aspects. Nowadays, light emitting diodes (LEDs) play a leading role in light emitting technology: it is common to find them both in house lighting and electronic devices display (smartphone, TV, etc.). The most innovative devices are based either on organic (OLED) or nanostructured materials, such as the quantum dots (QLED). These novel technologies paved the way to screens miniaturization and flexibility, leading to higher resolution and energetical efficiency at the same time. Nevertheless, the main issue of such a technology is related to their high production costs. In this regard, perovskites have taken the scene as the most promising materials to be used for a future implementation in optoelectronic devices such as LEDs and solar cells. Their excellent optical and electrical properties, together with the possibility to be deposited as thin film by solution processes, have led to efficient and cost-effective technologies. In fact, by virtue of the astonishing results achieved in the application of these materials in solar cells , many researchers are currently focused in perovskite-based LED (PeLED). Nowadays, the state of the art PeLEDs show high efficiency, even if their fabrication involves complex and expensive chemical techniques. In this light, the aim of this project is to overcome this issue, by implementing a new perovskite nanocrystals synthesis fabrication method into a PeLED device. This novel synthesis method is based on the infiltration of a perovskite solution within a mesoporous scaffold made of SiO2 nanoparticles. Previous studies have demonstrated that the perovskite nanocrystals can be synthetized within the nanopores nanostructured matrix. The goal of this work is to implement this method in PeLED device, in order to obtain efficient PeLED devices by an easier, faster and cost-effective process, with respect to the ones implemented up today. In the present work all the experimental details adopted in order to obtain a nanostructured PeLED based on different types of perovskites are presented. The best devices, obtained by the implementation of CsPbBr3 nanocrystals, have shown a maximum luminance of 26 cd/m2, which represent a promising result in term of efficiency. Moreover, different architectures have been explored; in particular, the PeLED devices in inverse configuration have also been tested as solar cells. Furthermore, the novel nanostructured PeLED presented in this work represents a cost- effective and environmentally safe technology, due to the easy solution-based deposition processes and the limited amount of perovskite (and so amount of lead) used. Hence, this new solution-based process has been demonstrated efficient in order to build perovskite- based PeLED, paving the way for future improvements and the integration in different optoelectronic applications.
Negli ultimi decenni, il drammatico scenario profilato dal cambiamento climatico ha imposto un notevole cambio di direzione negli obbiettivi della ricerca tecnologica. In ogni settore industriale, l’efficienza energetica e l’impatto ambientale di un dispositivo sono diventati, insieme alle sue performance ed all’aspetto economico, i fattori più rilevanti in vista di una futura commercializzazione. Nel mondo dei dispositivi optoelettronici, i LED sono stati i principali protagonisti di questa rivoluzione: ogni giorno siamo abituati a trovare questi device all’interno delle lampade delle nostre case, o ad illuminare gli schermi dei nostri televisori e smartphone. I dispositivi più innovativi sono basati sull’utilizzo di materiali nanostrutturati, quantum dots (QLED), o a base organica (OLED). Essi hanno permesso di minimizzare le dimensioni degli schermi, garantendo allo stesso tempo maggior risoluzione e minor consumo energetico del dispositivo. Il principale problema di queste tecnologie è però legato ai loro alti costi di produzione. In questo scenario, le perovskiti si sono dimostrate i materiali più promettenti per un futuro utilizzo all’interno di dispositivi optoelettronici come LED e celle solari. Le loro eccellenti proprietà ottiche ed elettriche, insieme alla possibilità di essere depositate come film sottili da fase liquida, hanno permesso di sviluppare tecnologie ad alta efficienza e basso costo. Questi materiali hanno conosciuto un’incredibile crescita nell’ambito delle celle solari e, in seconda battuta, in quello dei LED (PeLED). Sino ad ora, i PeLED che si sono dimostrati più efficaci utilizzano perovskiti in forma di nanocristalli, sfruttando tecniche di sintesi tanto efficaci quanto laboriose e complesse. Questo lavoro, si prefissa l’obiettivo di implementare all’interno di un PeLED una nuova tecnica di sintesi di nanocristalli di perovskita, basata sull’infiltrazione di essa all’interno di una matrice mesoporosa di SiO2. In studi precedenti, le nanoparticelle di silice si sono dimostrate capaci di confinare la crescita dei cristalli all’interno dei pori della matrice. Pertanto, riuscendo a garantire un trasporto di carica efficace tra i cristalli confinati nella matrice, è possibile immaginare di utilizzare questo metodo per la costruzione di PeLED con una nuova tecnica più semplice, veloce ed economica rispetto a quelle utilizzate sino ad ora. Il testo presenta nel dettaglio tutte le specifiche sperimentali adottate per ottenere un dispositivo PeLED nanostrutturato di CsPbBr3, caratterizzato da picchi di luminescenza fino a 26 cd/m2. Inoltre, sono stati costruiti dispositivi nella configurazione LED inversa, che si sono dimostrati capaci di funzionare anche come celle solari. La semplicità del processo, così come la bassa quantità di perovskita (e quindi di piombo) implementata nei dispositivi, rendono la tecnica sviluppata più conveniente e meno impattante sull’ambiente. Si è dimostrata quindi la possibilità di costruire dispositivi PeLED tramite questo promettente processo da fase liquida, che potrà trovare futuro impiego anche in altre applicazioni optoelettroniche.
Perovskite nanocrystals embedded in insulating scaffold for new light emitting diodes technologies
ZANETTA, ANDREA
2018/2019
Abstract
In the last decades, the dramatic scenario framed by the climate change has set a drastic shift in technological research. From the industrial point of view, the energetic efficiency and the environmental footprint of a device have become the most relevant aspects in its way to commercialization, together with its performances and its economic aspects. Nowadays, light emitting diodes (LEDs) play a leading role in light emitting technology: it is common to find them both in house lighting and electronic devices display (smartphone, TV, etc.). The most innovative devices are based either on organic (OLED) or nanostructured materials, such as the quantum dots (QLED). These novel technologies paved the way to screens miniaturization and flexibility, leading to higher resolution and energetical efficiency at the same time. Nevertheless, the main issue of such a technology is related to their high production costs. In this regard, perovskites have taken the scene as the most promising materials to be used for a future implementation in optoelectronic devices such as LEDs and solar cells. Their excellent optical and electrical properties, together with the possibility to be deposited as thin film by solution processes, have led to efficient and cost-effective technologies. In fact, by virtue of the astonishing results achieved in the application of these materials in solar cells , many researchers are currently focused in perovskite-based LED (PeLED). Nowadays, the state of the art PeLEDs show high efficiency, even if their fabrication involves complex and expensive chemical techniques. In this light, the aim of this project is to overcome this issue, by implementing a new perovskite nanocrystals synthesis fabrication method into a PeLED device. This novel synthesis method is based on the infiltration of a perovskite solution within a mesoporous scaffold made of SiO2 nanoparticles. Previous studies have demonstrated that the perovskite nanocrystals can be synthetized within the nanopores nanostructured matrix. The goal of this work is to implement this method in PeLED device, in order to obtain efficient PeLED devices by an easier, faster and cost-effective process, with respect to the ones implemented up today. In the present work all the experimental details adopted in order to obtain a nanostructured PeLED based on different types of perovskites are presented. The best devices, obtained by the implementation of CsPbBr3 nanocrystals, have shown a maximum luminance of 26 cd/m2, which represent a promising result in term of efficiency. Moreover, different architectures have been explored; in particular, the PeLED devices in inverse configuration have also been tested as solar cells. Furthermore, the novel nanostructured PeLED presented in this work represents a cost- effective and environmentally safe technology, due to the easy solution-based deposition processes and the limited amount of perovskite (and so amount of lead) used. Hence, this new solution-based process has been demonstrated efficient in order to build perovskite- based PeLED, paving the way for future improvements and the integration in different optoelectronic applications.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Zanetta.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
22.81 MB
Formato
Adobe PDF
|
22.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153411