Biodegradable and edible electronics are the new frontiers of organic electronics. Their aim is to reduce the electronic waste worldwide, which is destined to increase if we do not take action, and to pave the way to new applications such as point-of-care testing, smart labelling and disposable electronics: all applications that can enhance our everyday life. Organic electronic devices are known for their biocompatibility, flexibility, conformability, lightweight and possible transparency. It is in the nature of polymers, indeed, to be versatile and make it possible to control both electrical and mechanical properties of the final material simply by tuning the chemical composition of its constituents. Furthermore, thanks to its solubility in organic solvents, plastic can be solution-processed at low temperatures and ambient pressures with technologies such as inkjet printing, thus reducing both the production costs and the environmental impact. In this work, nearly-all biodegradable, self-standing and flexible transistors were produced, showing very satisfactory performances. Such a goal was achieved by replacing most of non eco-friendly materials used for the manufacturing of a very good performing and low-voltage operating organic field-effect transistor (OFET) with "green" materials, characterised by their biobased or recycled origin and biodegradable or edible nature. The main focus of this thesis has been the substitution of the device substrate, which makes up 98% of the entire device, and of the dielectric layer. Regarding substrates, polyhydroxybutyrate (PHB) and low-density polyethylene (LDPE) were studied. The former is a biobased, biodegradable and biocompatible polymer, whose film-forming properties were optimised when drop-casted from both a chloroform solution and an acetic acid solution. A self-standing, flexible and resistant thin film was obtained and it resulted suitable to be used as a printing substrate. The latter was instead selected as a proof-of-concept of a completely recycled and potentially biodegradable material thanks to the insertion of additives, and was successfully used as device substrate. Concerning dielectric materials, non-treated egg white film-forming abilities were studied and a dielectric constant of 7.6 was measured, allowing its successful integration as a gate dielectric. Finally, a biobased and edible chitosan solution was optimised to act as a solid electrolyte gate dielectric of an interdigitated low voltage OFET. As a result of this work, nearly-all biodegradable n-type OFETs with a PHB substrate and either albumen or chitosan gate dielectric were produced. The new materials perfectly integrated in an OFET structure with PEDOT:PSS contacts, PEI-based injection layer and P(NDI2OD-T2) semiconductor. Even if their performances were lower compared to the initial device, this can be considered a remarkable result that prepares the ground for further "green" achievements.
L’elettronica biodegradabile e quella edibile rappresentano le nuove frontiere dell’elettronica organica. Il loro scopo è quello di ridurre i rifiuti di derivazione elettronica nel mondo, ormai destinati ad aumentare a dismisura se non interveniamo, e di aprire la strada a nuove applicazioni pratiche come il "point-of-care testing", lo "smart labelling" e l’elettronica monouso, che potrebbero migliorare la nostra vita quotidiana. I dispositivi organici sono noti per la loro eccezionale biocompatibilità, flessibilità, conformabilità, leggerezza e trasparenza. I polimeri, infatti, sono versatili per natura ed è possibile controllare le loro proprietà elettriche e meccaniche semplicemente modificando la composizione chimica dei loro costituenti. Inoltre, grazie alla loro solubilità in solventi organici, essi possono essere processati da soluzione a basse temperature e a pressione atmosferica, riducendo sia il costo di lavorazione che l’impatto sull’ambiente. In questo lavoro è stato messo a punto un transistor organico a effetto di campo (OFET) quasi interamente biodegradabile, estremamente flessibile, self-standing e con proprietà più che soddisfacenti. Questo obbiettivo è stato raggiunto mediante la sostituzione di materiali non-ecosostenibili, usati dal gruppo di ricerca dell’ IIT per la realizzazione di un OFET operante a basse tensioni e avente performance eccellenti, con materiali "green" di origine naturale o riciclata che presentano biodegradabilità o edibilità. L’attenzione si è maggiormente incentrata sulla sostituzione del substrato, che rappresenta il 98% dell’intero dispositivo, e del dielettrico. Per quanto riguarda i substrati sono stati analizzati il poliidrossibutirrato (PHB) e il polietilene a bassa densità (LDPE). Il primo è un polimero biocompatibile, biodegradabile e di derivazione biologica, prodotto da una certa classe di batteri in condizioni di stress e in mancanza di nutrimento. La sua capacità di formare un film omogeneo e uniforme è stata studiata e ottimizzata quando depositato tramite drop-casting sia da una soluzione di cloroformio che da una di acido acetico. Ciò ha permesso di realizzare un film sottile, self-standing e resistente, adatto per essere utilizzato come substrato di un dispositivo elettronico. Il secondo substrato integrato con successo è stato invece prodotto dal gruppo di ricerca Smart Materials dell’IIT di Genova al fine di simulare un materiale completamente riciclato e potenzialmente biodegradabile grazie all’utilizzo di additivi. Per quanto riguarda i materiali dielettrici, l’albume d’uovo non trattato è stato integrato con successo dopo aver studiato le sue proprietò filmanti e dopo aver misurato la sua costante dielettrica, pari a 7.6. Una soluzione biodegradabile ed edibile di chitosano è stata infine ottimizzata per fungere da elettrolita solido di un transistor interdigitato. Come risultato complessivo del lavoro sono stati realizzati dei transistor organici di tipo n quasi interamente biodegradabili, aventi un film di PHB come substrato e l’albume o il chitosano come dielettrico. I nuovi materiali ecosostenibili si sono integrati efficacemente con quelli già usati per stampare i contatti di PEDOT:PSS, il semiconduttore N2200 e lo strato di iniezione a base di PEI. Anche se le prestazioni di questi dispositivi sono risultate leggermente inferiori a quelle del transistor iniziale, essi rappresentano un traguardo importante che pone le basi per successive ricerche verso un futuro più ecosostenibile.
Printed organic electronics based on edible and biodegradable materials
MAKSIMOVIC, KSENIJA
2018/2019
Abstract
Biodegradable and edible electronics are the new frontiers of organic electronics. Their aim is to reduce the electronic waste worldwide, which is destined to increase if we do not take action, and to pave the way to new applications such as point-of-care testing, smart labelling and disposable electronics: all applications that can enhance our everyday life. Organic electronic devices are known for their biocompatibility, flexibility, conformability, lightweight and possible transparency. It is in the nature of polymers, indeed, to be versatile and make it possible to control both electrical and mechanical properties of the final material simply by tuning the chemical composition of its constituents. Furthermore, thanks to its solubility in organic solvents, plastic can be solution-processed at low temperatures and ambient pressures with technologies such as inkjet printing, thus reducing both the production costs and the environmental impact. In this work, nearly-all biodegradable, self-standing and flexible transistors were produced, showing very satisfactory performances. Such a goal was achieved by replacing most of non eco-friendly materials used for the manufacturing of a very good performing and low-voltage operating organic field-effect transistor (OFET) with "green" materials, characterised by their biobased or recycled origin and biodegradable or edible nature. The main focus of this thesis has been the substitution of the device substrate, which makes up 98% of the entire device, and of the dielectric layer. Regarding substrates, polyhydroxybutyrate (PHB) and low-density polyethylene (LDPE) were studied. The former is a biobased, biodegradable and biocompatible polymer, whose film-forming properties were optimised when drop-casted from both a chloroform solution and an acetic acid solution. A self-standing, flexible and resistant thin film was obtained and it resulted suitable to be used as a printing substrate. The latter was instead selected as a proof-of-concept of a completely recycled and potentially biodegradable material thanks to the insertion of additives, and was successfully used as device substrate. Concerning dielectric materials, non-treated egg white film-forming abilities were studied and a dielectric constant of 7.6 was measured, allowing its successful integration as a gate dielectric. Finally, a biobased and edible chitosan solution was optimised to act as a solid electrolyte gate dielectric of an interdigitated low voltage OFET. As a result of this work, nearly-all biodegradable n-type OFETs with a PHB substrate and either albumen or chitosan gate dielectric were produced. The new materials perfectly integrated in an OFET structure with PEDOT:PSS contacts, PEI-based injection layer and P(NDI2OD-T2) semiconductor. Even if their performances were lower compared to the initial device, this can be considered a remarkable result that prepares the ground for further "green" achievements.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Maksimovic.pdf
Open Access dal 08/04/2021
Descrizione: Thesis text
Dimensione
58.1 MB
Formato
Adobe PDF
|
58.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153450