Cystic fibrosis (CF) is one of the most common life-threatening autosomal recessive genetic diseases, with an estimated incidence of one in 2500-4000 in Caucasians. CF is caused by mutations in the cystic fibrosis transmembrane conductance (CFTR) gene. Since CFTRs are expressed in many organs such as the pancreas, kidneys and intestine, cystic fibrosis results in a multi-organ pathology, that however mainly impacts the lungs. Considering the complex functions of this signaling system, a myriad of respiratory problems affects the patient. Mutated CFTR causes the accumulation of thick, sticky mucus in the respiratory tract, which inhibits mucociliary clearance mechanism, thus promoting the colonization of the airways by microbial pathogens. Furthermore, the microorganisms evolve in these conditions, leading to persisters and mutators that are capable of long-term surviving. In particular, the dominant chronic inflammation is generated by Pseudomonas aeruginosa, a ubiquitous multidrug resistant pathogen, usually absent in healthy individuals, able to adapt to the hostile environment of CF mucus. Mucus within the conductive zones is produced by serous and mucous cells, that secret water, mucins, electrolytes and a mixture of molecules with antimicrobial and anti-inflammatory properties. In healthy humans, mucus production is thus an innate defense mechanism, that forms a trap for bacteria, viruses and particles inhaled during respiration. On the contrary, CF sputum displays an altered microstructure, with elevate mucin and extracellular DNA content, on which its abnormal viscoelastic properties depend. As CF lung disease progresses, the formation of mucus plaques is partly responsible for extended infection and decline lung function. In addition, phagocytic immune cells such as neutrophils and macrophages are unable to kill the infecting organisms and the bacteria continue colonizing and forming biofilms. Consequently, the classical approaches in management of cystic fibrosis rely on anti-inflammatory and anti-microbial drugs. However, despite all the advances, no therapy is completely effective in both restoring lung functions and controlling disease progression. Moreover, the identification of a unique treatment becomes more difficult when the variability among patients is considered. This variability is due to differences in age, sex and degree of severity and it is present not only between different patients, but also within a single subject. With such knowledge, a more appropriate and patient-specific approach is required. In this Thesis, an in vitro cell-free platform was designed as a model of pathologic mucus, taking into account its chemical and viscoelastic features, in a patient-specific manner. The engineered mucus models were produced on the basis of a previously developed model, called Mu3Gel.
La fibrosi cistica (CF) è una delle più comuni malattie genetiche potenzialmente mortali, con un’incidenza stimata di una persona su 2500-4000 tra la popolazione caucasica. La CF è dovuta a una mutazione del gene regolatore di conduttanza trans-membrana della fibrosi cistica (CFTR). Poiché le proteine CFTR sono espresse in molti organi, come ad esempio il pancreas, i reni e l’intestino, la fibrosi cistica si traduce in una patologia multiorgano, che incide tuttavia soprattutto sui polmoni. Considerando le complesse funzioni di questo sistema di segnalazione, una gran numero di problemi respiratori colpisce il paziente. La mutazione del gene CFTR provoca l’accumulo, nel tratto respiratorio, di un muco denso e viscoso, che inibisce il meccanismo di clearance muco-ciliare, promuovendo così la colonizzazione delle vie respiratorie da parte di microorganismi patogeni. Inoltre, in queste condizioni, i microorganismi evolvono verso specie persistenti e mutanti, capaci di sopravvivere per lungo tempo. In particolare, la principale infiammazione cronica è provocata dalla Pseudomonas aerugionsa, un patogeno ubiquitario e resistente a molteplici farmaci, generalmente assente negli individui sani, capace di adattarsi all’ambiente ostile del muco patologico. Nelle zone di conduzione, il muco è prodotto dalle cellule sierose e mucose, le quali secernono acqua, mucine, elettroliti e un misto di molecole con proprietà antimicrobiche e antinfiammatorie. Nei soggetti sani, la produzione di muco è quindi un meccanismo innato di difesa, che costituisce una trappola per batteri, virus e particelle inalate durante la respirazione. Al contrario, il muco CF manifesta una microstruttura alterata, con un elevato contenuto di mucina e DNA extracellulare, sulla base del quale dipendono le anomale proprietà viscoelastiche. Mentre il disturbo progredisce, la formazione di placche mucose è parzialmente responsabile delle prolungate infezioni e del declino della funzione polmonare. In aggiunta, le cellule immunitarie fagocitiche, come i neutrofili e i macrofagi, non riescono a uccidere i patogeni e i batteri continuano così a colonizzare e a formare biofilm. Di conseguenza, gli approcci classici per trattare la fibrosi cistica si basano su farmaci antinfiammatori e antimicrobici. Tuttavia, nonostante i progressi, nessuna terapia risulta essere totalmente efficace sia nel ripristinare le funzioni polmonari che nel controllare il decorso della malattia. Inoltre, identificare un unico trattamento diventa ancor più complicato se si considera la variabilità tra i pazienti. Questa variabilità è dovuta a differenze di età, sesso e grado di severità ed è presente non solo tra i diversi pazienti, ma anche nello stesso soggetto. Con questa consapevolezza, è quindi richiesto un approccio più appropriato e personalizzato. In questa Tesi, una piattaforma in vitro senza cellule è stata progettata come modello di muco patologico, tenendo in considerazione le sue proprietà chimiche e viscoelastiche in maniera personalizzata. I modelli di muco ingegnerizzato sono stati prodotti sulla base di un modello precedentemente sviluppato, chiamato Mu3Gel.
Patient-specific biochemical features in 3D mucus models
BRUGIN, ALESSANDRO
2018/2019
Abstract
Cystic fibrosis (CF) is one of the most common life-threatening autosomal recessive genetic diseases, with an estimated incidence of one in 2500-4000 in Caucasians. CF is caused by mutations in the cystic fibrosis transmembrane conductance (CFTR) gene. Since CFTRs are expressed in many organs such as the pancreas, kidneys and intestine, cystic fibrosis results in a multi-organ pathology, that however mainly impacts the lungs. Considering the complex functions of this signaling system, a myriad of respiratory problems affects the patient. Mutated CFTR causes the accumulation of thick, sticky mucus in the respiratory tract, which inhibits mucociliary clearance mechanism, thus promoting the colonization of the airways by microbial pathogens. Furthermore, the microorganisms evolve in these conditions, leading to persisters and mutators that are capable of long-term surviving. In particular, the dominant chronic inflammation is generated by Pseudomonas aeruginosa, a ubiquitous multidrug resistant pathogen, usually absent in healthy individuals, able to adapt to the hostile environment of CF mucus. Mucus within the conductive zones is produced by serous and mucous cells, that secret water, mucins, electrolytes and a mixture of molecules with antimicrobial and anti-inflammatory properties. In healthy humans, mucus production is thus an innate defense mechanism, that forms a trap for bacteria, viruses and particles inhaled during respiration. On the contrary, CF sputum displays an altered microstructure, with elevate mucin and extracellular DNA content, on which its abnormal viscoelastic properties depend. As CF lung disease progresses, the formation of mucus plaques is partly responsible for extended infection and decline lung function. In addition, phagocytic immune cells such as neutrophils and macrophages are unable to kill the infecting organisms and the bacteria continue colonizing and forming biofilms. Consequently, the classical approaches in management of cystic fibrosis rely on anti-inflammatory and anti-microbial drugs. However, despite all the advances, no therapy is completely effective in both restoring lung functions and controlling disease progression. Moreover, the identification of a unique treatment becomes more difficult when the variability among patients is considered. This variability is due to differences in age, sex and degree of severity and it is present not only between different patients, but also within a single subject. With such knowledge, a more appropriate and patient-specific approach is required. In this Thesis, an in vitro cell-free platform was designed as a model of pathologic mucus, taking into account its chemical and viscoelastic features, in a patient-specific manner. The engineered mucus models were produced on the basis of a previously developed model, called Mu3Gel.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Brugin.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
12.64 MB
Formato
Adobe PDF
|
12.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153635