The study of random matrices started in 1940s, when the physicists observed that the empirical spectral distributions of random Hamiltonians tends to a semicircle. Since then, more and more research results about random matrices have been published, and random matrix theory turned out to have deep connections with free probability and combinatorics. In the meantime, random matrix theory has been applied in many other fields, in almost all the situations where one wants to know the asymptotic property of some statistics determined by spectra of large matrices. In this thesis, we present an overview of random matrix theory and illustrate its applications to: telecommunication MIMO systems to the computation of channel capacities, CDMA systems in the evaluation of minimum mean square errors and spectral efficiency, in quantum information for the study of quantum channel capacities and the celebrated conjecture on additivity of quantum entropy, in open quantum systems for finding spectra of random Lindblad operators.
Lo studio delle matrici aleatorie iniziò negli anni '40, quando i fisici osservarono che le distribuzioni spettrali empiriche di Hamiltoniani aleatorie tendono a un semicerchio. Da allora, sono stati scoperti sempre più risultati di ricerca sulle matrici aleatorie e la teoria delle matrici aleatorie ha rivelato profonde connessioni con la free probability e la combinatoria. Nel frattempo, la teoria delle matrici aleatorie è stata applicata in molti altri campi, in quasi tutte le situazioni in cui si desidera conoscere le proprietà asintotiche di alcune statistiche determinate da spettri di matrici di grandi dimensioni. In questa tesi, presentiamo una panoramica della teoria delle matrici random illustrando le sue applicazioni a: sistemi MIMO di telecomunicazione per il calcolo delle capacità dei canali; sistemi CDMA nella valutazione di errore quadratico medio minimo ed efficienza spettrale; teoria dell'informazione quantistica per lo studio delle capacità dei canali quantici e la celebre congettura sull'additività della entropia quantistica; in sistemi quantistici aperti per la ricerca di spettri di operatori Linbladiani aleatori.
Random matrix theory and applications in telecommunication and quantum systems
LI, ZHENG
2018/2019
Abstract
The study of random matrices started in 1940s, when the physicists observed that the empirical spectral distributions of random Hamiltonians tends to a semicircle. Since then, more and more research results about random matrices have been published, and random matrix theory turned out to have deep connections with free probability and combinatorics. In the meantime, random matrix theory has been applied in many other fields, in almost all the situations where one wants to know the asymptotic property of some statistics determined by spectra of large matrices. In this thesis, we present an overview of random matrix theory and illustrate its applications to: telecommunication MIMO systems to the computation of channel capacities, CDMA systems in the evaluation of minimum mean square errors and spectral efficiency, in quantum information for the study of quantum channel capacities and the celebrated conjecture on additivity of quantum entropy, in open quantum systems for finding spectra of random Lindblad operators.File | Dimensione | Formato | |
---|---|---|---|
Tesi_ZL_RMT_05142020.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153652