ABSTRACT Since Space opened to private businesses, lower costs and survival technologies have been developed. Nasa and private companies are engineering permanent Moon Settlements. Nonetheless, to reach a sustainable Human-Space-Presence, “Earth Independence” - in terms of resources and capabilities - must be achieved. Increasing cost and volume constraints concerning bringing food to Space led to extreme stress on food, whereby sacrificing quality, taste and emotional impact: all relevant issues for future space inhabitants not military-trained who might not cope with rigid diets. Experiments - in orbit and on Earth- did separately test i.a. 3D-printed food, hydroponic cultures, laser cooking. However without an holistic approach, Food in Microgravity Environment remains an unsolved issue. The goal of this study is to assess whether current and emerging food technologies (including additive manufacturing) could merge into an multifunction, intelligent Space equipment. The methodology of “Space Design” developed at Milan Polytechnic provided the multidisciplinary approach to translate space engineering problems into a user-centered product. Interviews to astronauts, studying technologies at Barilla, Argotec, Thales Alenia Space, Cefla, Gastronomic Science University, Thimus, FabLab, and independent prototyping, provided additional input. The research findings demonstrate that food-3D-printers alone are not a viable solution. Instead, combining additive technologies with traditional food and cooking techniques (e.g. Italian pasta making, Asian food balls cooking) led to design a compact Space Kitchen able to mix multiple ingredients and cook on demand in Microgravity. Furthermore, the research proves the necessity to integrate all steps of the food chain. Overall, through the research a future Integrated Space Food System is envisioned by adding Orbital Farms (hydroponic and aeroponics cultures integrated into a standard ISS module) and Deployable Food Storages to the Space Kitchen and Food Design. Such system becomes scalable, independent, suitable to orbit planets, long planetary missions and a food source for Moon bases.
ABSTRACT Da quando lo Spazio è stato aperto alle imprese private i costi si sono ridotti, sono state sviluppati tecnologie avanzate di sopravvivenza e progetti di insediamenti lunari permanenti. Tuttavia, la futura presenza Umana nello Spazio sostenibile richiede “l’indipendenza della Terra” in termini di risorse e capacità. I vincoli in termini di costi e volumi per il trasporto di alimenti nello Spazio ha portato all’applicazione di tecniche di conservazione estremizzate, sacrificandone così qualità, gusto e impatto emotivo. Tali questioni sono di grande rilevanza considerando che i futuri abitanti dello Spazio non saranno solo militari con addestramento specifico e con la capacita’ di sostenere diete rigide. Diversi esperimenti - in orbita e sulla Terra - hanno testato separatamente i.a. cibo stampato in 3D, colture idroponiche e cottura laser. Tuttavia, senza un approccio olistico, il tema del cibo in micro-gravità rimane un problema irrisolto. L’obiettivo di questa tesi è valutare se le tecnologie alimentari attuali ed emergenti (compresa la produzione additiva) possano confluire in un’attrezzatura spaziale multifunzionale e intelligente. La metodologia di “Space Design” elaborata al Politecnico di Milano ha sviluppato l’approccio multidisciplinare utilizzato in questa tesi per tradurre i problemi di ingegneria spaziale in un prodotto incentrato sull’utente. Le interviste agli astronauti, lo studio di tecnologie presso Barilla, Argotec, Thales Alenia Space, Cefla, Università di Scienze Gastronomiche, Thimus, FabLab e la prototipazione indipendente, hanno fornito ulteriori input. I risultati della ricerca dimostrano che le sole stampanti 3D per alimenti non sono una soluzione praticabile. Invece, combinando le tecnologie additive con le tradizionali tecniche alimentari e di cottura (ad es. pasta italiana, polpette di cibo asiatico) ha portato alla progettazione di una Cucina Spaziale Compatta in grado di processare più ingredienti e cucinare a richiesta in micro-gravità. Inoltre, la ricerca dimostra la necessità di integrare tutte le fasi della catena alimentare. Complessivamente, la ricerca giunge a prevedere un Futuro Sistema Alimentare Spaziale Integrato composto di Serre Orbitali (colture idroponiche e aeroponiche integrate in un modulo ISS standard) e di un Sistema di Stoccaggio e Distribuzione Modulare interconnesso alla Cucina Spaziale e funzionale al Design del Cibo. Tale sistema diventa cosi’ modulare, indipendente, adatto all’orbita attorno a pianeti, a lunghe missioni planetarie e a divenire una fonte di cibo per le basi lunari.
Design of a space food system. Space food design. Space kitchen design. Orbital farm design. UX design
MANGINI, STEFANO
2019/2020
Abstract
ABSTRACT Since Space opened to private businesses, lower costs and survival technologies have been developed. Nasa and private companies are engineering permanent Moon Settlements. Nonetheless, to reach a sustainable Human-Space-Presence, “Earth Independence” - in terms of resources and capabilities - must be achieved. Increasing cost and volume constraints concerning bringing food to Space led to extreme stress on food, whereby sacrificing quality, taste and emotional impact: all relevant issues for future space inhabitants not military-trained who might not cope with rigid diets. Experiments - in orbit and on Earth- did separately test i.a. 3D-printed food, hydroponic cultures, laser cooking. However without an holistic approach, Food in Microgravity Environment remains an unsolved issue. The goal of this study is to assess whether current and emerging food technologies (including additive manufacturing) could merge into an multifunction, intelligent Space equipment. The methodology of “Space Design” developed at Milan Polytechnic provided the multidisciplinary approach to translate space engineering problems into a user-centered product. Interviews to astronauts, studying technologies at Barilla, Argotec, Thales Alenia Space, Cefla, Gastronomic Science University, Thimus, FabLab, and independent prototyping, provided additional input. The research findings demonstrate that food-3D-printers alone are not a viable solution. Instead, combining additive technologies with traditional food and cooking techniques (e.g. Italian pasta making, Asian food balls cooking) led to design a compact Space Kitchen able to mix multiple ingredients and cook on demand in Microgravity. Furthermore, the research proves the necessity to integrate all steps of the food chain. Overall, through the research a future Integrated Space Food System is envisioned by adding Orbital Farms (hydroponic and aeroponics cultures integrated into a standard ISS module) and Deployable Food Storages to the Space Kitchen and Food Design. Such system becomes scalable, independent, suitable to orbit planets, long planetary missions and a food source for Moon bases.File | Dimensione | Formato | |
---|---|---|---|
MANGINI - 904064 - Politecnico Milano - Tesi Laurea Magistrale - SPACE FOOD - MADE IN SPACE FOR SPACE - May 20 - 2020.pdf
non accessibile
Descrizione: MANGINI - 904064 - Politecnico Milano - Tesi Laurea Magistrale - SPACE FOOD - MADE IN SPACE FOR SPACE - May 20 - 2020
Dimensione
168.96 MB
Formato
Adobe PDF
|
168.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153816