Within the perspective of reducing energy consumption and fight climate changes, buildings play a crucial role representing the 40% of total energy consumptions in the EU. A key aspect towards energy efficiency in a building is the analysis of the energy balance of the thermal zones of the building. The main objective of this work is to create a dynamic energy model, in Modelica language, that allows to evaluate the energy behaviour of a building. In order to achieve this goal, each envelope component has been modelled and validated separately and finally assembled to the others to create the complete model of the thermal zone. In particular, as regard the external wall model, it has been validated comparing the results with the exact solution defined by the EN ISO 13786, considering two different configurations: a five-node wall and a twenty-three-node wall. From these analyses it results that the twenty-three nodes configuration, obtained applying the UNI EN ISO 52016 – Annex A, allows to reduce the error on the mean temperature difference on the internal surface of the 61% with respect to the five nodes configuration. Successively, the results at the two sides of the wall have been compared with the ones provided by experimental data of the reference building. In this phase, four models for the external convective heat transfer coefficient have been tested. Furthermore, regarding the window model, it has been considered the radiation absorbed by each glass pane and the optical properties of the glazing system in function of the inclination of the sun. Hence, assembling the already validated models of each envelope component and adding the models related to the shortwave and longwave radiation and the one related to the air volume, it has been created the thermal zone model. From the results in free floating conditions it is obtained an average temperature difference of -0.16°C with respect to the sensor with an almost zero time shift and maximum and minimum differences not higher than 1°C. As regard the thermal power, when the heater is turned on, it has been obtained a 10% difference with respect to the TRNSYS results.
Nell’ottica di ridurre i consumi energetici e lottare contro i cambiamenti climatici, gli edifici svolgono un ruolo fondamentale rappresentando il 40% dei consumi energetici totali nell’UE. Un fattore chiave per l’efficientamento energetico di un edificio è l’analisi dei bilanci energetici attraverso la sua zona termica. L’obiettivo principale di questa tesi è creare un modello energetico dinamico, in linguaggio Modelica, che permetta di stimare il comportamento energetico di un edificio. Al fine di raggiungere questo scopo, ogni componente dell’involucro edilizio è stato modellato e validato separatamente e successivamente assemblato agli altri modelli per creare il modello finale di zona termica. In particolare, il modello di parete esterna è stato validato confrontando i risultati con la soluzione esatta definita dalla EN ISO 13786, per due diverse configurazioni: considerando un muro a cinque nodi e un muro a ventitré nodi. Da queste analisi risulta che la configurazione a ventitré nodi, ottenuta applicando la UNI EN ISO 52016 – Allegato A, permette di ridurre l’errore sulla differenza di temperatura media della superficie interna del 61% rispetto alla configurazione a cinque nodi. In seguito, i risultati sulle superfici esterne del muro sono stati confrontati con i dati sperimentali dell’edificio di riferimento. In questa fase sono stati testati quattro modelli per la definizione del coefficiente convettivo esterno. Inoltre, per il modello di finestra sono state considerate la radiazione assorbita da ogni vetro e le proprietà ottiche della finestra in funzione dell’inclinazione del sole. Dunque, assemblando i modelli già validati dei vari componenti dell’involucro e aggiungendo i modelli relativi alla radiazione ad onde corte e ad onde lunghe e quello relativo al volume d’aria, è stato creato il modello di zona termica. Dai risultati con l’impianto spento si ottiene una differenza di temperatura media di -0.16°C rispetto al sensore con uno sfasamento quasi nullo e differenze positive e negative non superiori a 1°C. Riguardo alla potenza termica richiesta quando l’impianto è acceso, viene ottenuta una differenza del 10% rispetto ai valori di TRNSYS.
A thermal zone model in Modelica language : definition and validation
ALESCI, ROSSELLA
2018/2019
Abstract
Within the perspective of reducing energy consumption and fight climate changes, buildings play a crucial role representing the 40% of total energy consumptions in the EU. A key aspect towards energy efficiency in a building is the analysis of the energy balance of the thermal zones of the building. The main objective of this work is to create a dynamic energy model, in Modelica language, that allows to evaluate the energy behaviour of a building. In order to achieve this goal, each envelope component has been modelled and validated separately and finally assembled to the others to create the complete model of the thermal zone. In particular, as regard the external wall model, it has been validated comparing the results with the exact solution defined by the EN ISO 13786, considering two different configurations: a five-node wall and a twenty-three-node wall. From these analyses it results that the twenty-three nodes configuration, obtained applying the UNI EN ISO 52016 – Annex A, allows to reduce the error on the mean temperature difference on the internal surface of the 61% with respect to the five nodes configuration. Successively, the results at the two sides of the wall have been compared with the ones provided by experimental data of the reference building. In this phase, four models for the external convective heat transfer coefficient have been tested. Furthermore, regarding the window model, it has been considered the radiation absorbed by each glass pane and the optical properties of the glazing system in function of the inclination of the sun. Hence, assembling the already validated models of each envelope component and adding the models related to the shortwave and longwave radiation and the one related to the air volume, it has been created the thermal zone model. From the results in free floating conditions it is obtained an average temperature difference of -0.16°C with respect to the sensor with an almost zero time shift and maximum and minimum differences not higher than 1°C. As regard the thermal power, when the heater is turned on, it has been obtained a 10% difference with respect to the TRNSYS results.File | Dimensione | Formato | |
---|---|---|---|
2020_6_Alesci.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
4.09 MB
Formato
Adobe PDF
|
4.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/153967