This work aims to show the numerical analysis of the finite element formulation of a mathematical model that describes the behaviour of an incompressible and non-Newtonian fluid in complex geometries. The fluid is supposed to be governed by the Stokes equation, coupled to the energy equation due to the non-Newtonian nature of the fluid; the stability of both the analytical and numerical solution is proved, followed by the proof of the a priori error estimates, which will be corroborated through numerical tests. The same problem is then addressed in fictitious domains, often used in problems in which there is an interface between two materials or in problems with complex geometries, through a CutFEM numerical analysis based on finite element spaces, introducing "ghost penalty" terms and the imposition of the boundary conditions through the Nitsche penalty method, to ensure the stability of the problem on the cut elements. The stability, passing through the generalized inf-sup condition, and the a priori error analysis are discussed. Finally, these theoretical results are supported by numerical tests.
Questo lavoro si propone di svolgere l’analisi numerica della formulazione ad elementi finiti di un modello matematico che descrive il comportamento di un fluido incomprimibile e non-Newtoniano in geometrie complesse. Si suppone che il fluido sia governato dall’equazione di Stokes, accoppiata all’equazione dell’energia a causa della natura non-Newtoniana del fluido; viene dimostrata la stabilità della soluzione sia analitica che teorica, seguita dalla dimostrazione delle stime di errore a priori, che saranno verificate attraverso test numerici. Il medesimo problema viene poi affrontato in domini fittizi,spesso utilizzati in problemi in cui `e presente una interfaccia tra due materiali o in problemi a geometrie complesse, attraverso una analisi numerica CutFEM sugli spazi ad elementi finiti, introducendo termini di tipo ”ghostpenalty” e l’imposizione delle condizioni al bordo tramite il metodo di penalizzazione di Nitsche per garantire la stabilità del problema sugli elementi tagliati. Viene quindi mostrata la stabilita, passando per la condizione di inf-sup generalizzata, e viene discussa l’analisi dell’errore a priori. Questi risultati teorici vengono infine supportati da test numerici.
On the finite element approximation of thermo-fluid dynamics problems
MELAS, NICOLA
2018/2019
Abstract
This work aims to show the numerical analysis of the finite element formulation of a mathematical model that describes the behaviour of an incompressible and non-Newtonian fluid in complex geometries. The fluid is supposed to be governed by the Stokes equation, coupled to the energy equation due to the non-Newtonian nature of the fluid; the stability of both the analytical and numerical solution is proved, followed by the proof of the a priori error estimates, which will be corroborated through numerical tests. The same problem is then addressed in fictitious domains, often used in problems in which there is an interface between two materials or in problems with complex geometries, through a CutFEM numerical analysis based on finite element spaces, introducing "ghost penalty" terms and the imposition of the boundary conditions through the Nitsche penalty method, to ensure the stability of the problem on the cut elements. The stability, passing through the generalized inf-sup condition, and the a priori error analysis are discussed. Finally, these theoretical results are supported by numerical tests.File | Dimensione | Formato | |
---|---|---|---|
ThesisMelasNicola897582.pdf
solo utenti autorizzati dal 21/05/2021
Descrizione: Testo della Tesi
Dimensione
2.53 MB
Formato
Adobe PDF
|
2.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/154117