Especially along the past two decades a rising consciousness developed about the need of facing a worldwide problem: the energy consumption affecting Earth natural resources and climate crisis. This is widespread mostly among the countries whose economy and industry have already reached high levels of development. The first step was the signing of the Brundtland Report called Our Common Future, published in 1987 by the United Nations, with the aim of introducing the environmental theme into the formal political development sphere and raising public awareness of the problem. In the 2000s, the European Union, inspired by the Kyoto Protocol, produced the so-called Energy Performance Building Directive (EPBD) to improve energy performance in the building sector of the Community. One of the most important technical evolutions going side by side with the EPBD series is the improved accuracy in the design of the model physical behaviour in time: starting from a seasonal evaluation, standards moved to a monthly semi-stationary method and then introduced the hourly dynamic one, which is already an alternative to the present methodologies and the future of the building energy modelling. The hourly dynamic calculation method defined by the UNI EN ISO 52016-1 standard makes it possible to determine, for each hour of the year, whether the building should be heated or cooled by the systems. The purpose of this work is to analyse the calculation methods under two different points of view: the theoretical and the practical ones. As for the first, we’ll focus on the dynamic method peculiarities that give us the possibility of modelling the behaviour of the building under investigation or design in such a deep way, characterizing it with a lot of parameters and variables with an hourly timestep; after that we’ll point out the dynamic output potentialities which make the real difference with respect to the semi-stationary one. As for the practical aspect, considering its progressive integration into the national standards and thus in our scientific culture, the analysis will relate to the fields of application of the dynamic method according to the current regulations, ranging over several cases like new construction permit, energy performance certificate and energy audit, facing the key issue: (When) is the hourly dynamic method helpful and necessary in the building energy modelling? In order to give an answer, two case studies are presented. The first one regards an existing building to be renovated, located in Casale Monferrato (AL), Piemonte, in the North of Italy: it has a residential intended use and needs to undergo an energy audit to evaluate its winter energy behaviour and performances and the possible improvements. The second case study concerns a part of an existing office building located in Milan, Lombardia, again in the North of Italy: characterized by a different type of construction technology and use, it requires also different energy needs, especially in terms of cooling loads, which may have a strong impact in non-residential buildings and whose study can’t be approximated and reduced to a monthly analysis.

Negli ultimi due decenni, in particolare tra i paesi in cui economia ed industria hanno già raggiunto alti livelli si sviluppo, si è fatta sempre più crescente la consapevolezza della necessità di affrontare un problema su scala mondiale: le conseguenze del consumo di energia sulle risorse naturali e sui cambiamenti climatici. Il primo vero passo è stato l’Our Common Future, pubblicato nel 1987 delle Nazioni Unite, con lo scopo di introdurre il tema della sostenibilità ambientale in ambito politico, sensibilizzando anche tutta la popolazione. Negli Anni 2000, l’Unione Europea, sulla base del Protocollo di Kyoto, emanò la cosiddetta Energy Performance Building Directive (EPBD) al fine di migliorare l’efficienza energetica del settore edilizio della Comunità. Una delle più importanti evoluzioni a fianco dell’EPBD è stato il progressivo aumento del livello di dettaglio dei programmi di modellazione energetica nella descrizione del comportamento degli edifici dal punto di vista fisico-tecnico nel tempo: partendo da un calcolo stagionale, si è passati al metodo semi-stazionario mensile per arrivare a quello dinamico orario, che è già un’alternativa ai presenti metodi ed il futuro della modellazione energetica degli edifici. Il metodo dinamico orario, in particolare quello decritto dalla UNI EN ISO 52016-1, permette di determinare se il modello energetico debba prevedere l’attivazione degli impianti di riscaldamento o raffrescamento, con passo orario. Lo scopo di questo lavoro è analizzare i metodi di calcolo sotto due punti di vista: teorico e pratico. Per quanto concerne il primo, ci si focalizzerà sul metodo dinamico con le sue molteplici caratteristiche e le potenzialità che fanno la differenza rispetto a quello semi-stazionario mensile. Dal punto di vista pratico, invece, considerando la sua integrazione nel quadro normativo nazionale, l’analisi riguarderà i campi di applicazione del metodo dinamico secondo le attuali regolamentazioni, svariando tra diverse casistiche, come la nuova costruzione, la certificazione energetica e la diagnosi energetica, per affrontare la domanda: Quando è utile e necessario il metodo dinamico orario nella simulazione energetica degli edifici? Per dare una risposta, sono riportati anche due casi studio. Il primo riguarda un edificio esistente da riqualificare energeticamente, situato a Casale Monferrato (AL), Piemonte: è ad uso residenziale e deve essere sottoposto ad una diagnosi energetica per valutarne il comportamento in regime invernale ed i possibili interventi migliorativi. Il secondo caso studio è sviluppato su una parte di un edificio esistente per uffici, situato a Milano, in Lombardia: caratterizzato da differente tipologia costruttiva e destinazione d’uso, richiede anche un diverso fabbisogno energetico, specialmente in termini di raffrescamento, che può avere un impatto significativo specialmente in edifici ad uso non residenziale e il cui studio non può essere ridotto ad un’analisi mensile.

Dynamic and semi-stationary calculation methods for building energy simulation: impacts on energy audit, loads and comfort analysis in two real case scenarios

LUNATI, MARCO
2018/2019

Abstract

Especially along the past two decades a rising consciousness developed about the need of facing a worldwide problem: the energy consumption affecting Earth natural resources and climate crisis. This is widespread mostly among the countries whose economy and industry have already reached high levels of development. The first step was the signing of the Brundtland Report called Our Common Future, published in 1987 by the United Nations, with the aim of introducing the environmental theme into the formal political development sphere and raising public awareness of the problem. In the 2000s, the European Union, inspired by the Kyoto Protocol, produced the so-called Energy Performance Building Directive (EPBD) to improve energy performance in the building sector of the Community. One of the most important technical evolutions going side by side with the EPBD series is the improved accuracy in the design of the model physical behaviour in time: starting from a seasonal evaluation, standards moved to a monthly semi-stationary method and then introduced the hourly dynamic one, which is already an alternative to the present methodologies and the future of the building energy modelling. The hourly dynamic calculation method defined by the UNI EN ISO 52016-1 standard makes it possible to determine, for each hour of the year, whether the building should be heated or cooled by the systems. The purpose of this work is to analyse the calculation methods under two different points of view: the theoretical and the practical ones. As for the first, we’ll focus on the dynamic method peculiarities that give us the possibility of modelling the behaviour of the building under investigation or design in such a deep way, characterizing it with a lot of parameters and variables with an hourly timestep; after that we’ll point out the dynamic output potentialities which make the real difference with respect to the semi-stationary one. As for the practical aspect, considering its progressive integration into the national standards and thus in our scientific culture, the analysis will relate to the fields of application of the dynamic method according to the current regulations, ranging over several cases like new construction permit, energy performance certificate and energy audit, facing the key issue: (When) is the hourly dynamic method helpful and necessary in the building energy modelling? In order to give an answer, two case studies are presented. The first one regards an existing building to be renovated, located in Casale Monferrato (AL), Piemonte, in the North of Italy: it has a residential intended use and needs to undergo an energy audit to evaluate its winter energy behaviour and performances and the possible improvements. The second case study concerns a part of an existing office building located in Milan, Lombardia, again in the North of Italy: characterized by a different type of construction technology and use, it requires also different energy needs, especially in terms of cooling loads, which may have a strong impact in non-residential buildings and whose study can’t be approximated and reduced to a monthly analysis.
GALBUSERA, GIORGIO
ARC I - Scuola di Architettura Urbanistica Ingegneria delle Costruzioni
29-apr-2020
2018/2019
Negli ultimi due decenni, in particolare tra i paesi in cui economia ed industria hanno già raggiunto alti livelli si sviluppo, si è fatta sempre più crescente la consapevolezza della necessità di affrontare un problema su scala mondiale: le conseguenze del consumo di energia sulle risorse naturali e sui cambiamenti climatici. Il primo vero passo è stato l’Our Common Future, pubblicato nel 1987 delle Nazioni Unite, con lo scopo di introdurre il tema della sostenibilità ambientale in ambito politico, sensibilizzando anche tutta la popolazione. Negli Anni 2000, l’Unione Europea, sulla base del Protocollo di Kyoto, emanò la cosiddetta Energy Performance Building Directive (EPBD) al fine di migliorare l’efficienza energetica del settore edilizio della Comunità. Una delle più importanti evoluzioni a fianco dell’EPBD è stato il progressivo aumento del livello di dettaglio dei programmi di modellazione energetica nella descrizione del comportamento degli edifici dal punto di vista fisico-tecnico nel tempo: partendo da un calcolo stagionale, si è passati al metodo semi-stazionario mensile per arrivare a quello dinamico orario, che è già un’alternativa ai presenti metodi ed il futuro della modellazione energetica degli edifici. Il metodo dinamico orario, in particolare quello decritto dalla UNI EN ISO 52016-1, permette di determinare se il modello energetico debba prevedere l’attivazione degli impianti di riscaldamento o raffrescamento, con passo orario. Lo scopo di questo lavoro è analizzare i metodi di calcolo sotto due punti di vista: teorico e pratico. Per quanto concerne il primo, ci si focalizzerà sul metodo dinamico con le sue molteplici caratteristiche e le potenzialità che fanno la differenza rispetto a quello semi-stazionario mensile. Dal punto di vista pratico, invece, considerando la sua integrazione nel quadro normativo nazionale, l’analisi riguarderà i campi di applicazione del metodo dinamico secondo le attuali regolamentazioni, svariando tra diverse casistiche, come la nuova costruzione, la certificazione energetica e la diagnosi energetica, per affrontare la domanda: Quando è utile e necessario il metodo dinamico orario nella simulazione energetica degli edifici? Per dare una risposta, sono riportati anche due casi studio. Il primo riguarda un edificio esistente da riqualificare energeticamente, situato a Casale Monferrato (AL), Piemonte: è ad uso residenziale e deve essere sottoposto ad una diagnosi energetica per valutarne il comportamento in regime invernale ed i possibili interventi migliorativi. Il secondo caso studio è sviluppato su una parte di un edificio esistente per uffici, situato a Milano, in Lombardia: caratterizzato da differente tipologia costruttiva e destinazione d’uso, richiede anche un diverso fabbisogno energetico, specialmente in termini di raffrescamento, che può avere un impatto significativo specialmente in edifici ad uso non residenziale e il cui studio non può essere ridotto ad un’analisi mensile.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
Model validation.xlsx

non accessibile

Descrizione: Case study 1_Model validation calculation
Dimensione 53.29 kB
Formato Microsoft Excel XML
53.29 kB Microsoft Excel XML   Visualizza/Apri
Improving scenarios.xlsx

non accessibile

Descrizione: Case study 1_Improving scenarios calculation
Dimensione 75.52 kB
Formato Microsoft Excel XML
75.52 kB Microsoft Excel XML   Visualizza/Apri
Simulations comparison.xlsx

non accessibile

Descrizione: Case study 2_Simulations comparison
Dimensione 532.04 kB
Formato Microsoft Excel XML
532.04 kB Microsoft Excel XML   Visualizza/Apri
Simulations comparison_hourly.xlsx

non accessibile

Descrizione: Case study 2_Simulations comparison_hourly
Dimensione 6.64 MB
Formato Microsoft Excel XML
6.64 MB Microsoft Excel XML   Visualizza/Apri
Thermal comfort_Sc0_D2'_FR_6N.xlsx

non accessibile

Descrizione: Case study 2_Thermal comfort
Dimensione 6.98 MB
Formato Microsoft Excel XML
6.98 MB Microsoft Excel XML   Visualizza/Apri
Modello 3D.rvt

non accessibile

Descrizione: Case study 1_3D model
Dimensione 8.04 MB
Formato Revit
8.04 MB Revit   Visualizza/Apri
Modello 3D_v2.rvt

non accessibile

Descrizione: Case study 2_3D model
Dimensione 11.5 MB
Formato Revit
11.5 MB Revit   Visualizza/Apri
Marco Lunati 896568_Final Thesis.pdf

non accessibile

Descrizione: Final Thesis main document
Dimensione 10.16 MB
Formato Adobe PDF
10.16 MB Adobe PDF   Visualizza/Apri
Sc0_S1.leto

non accessibile

Descrizione: Case study 1_Energy model Sc0_S1
Dimensione 124 kB
Formato Leto
124 kB Leto   Visualizza/Apri
Sc0_D7.icaro

non accessibile

Descrizione: Case study 1_Energy model Sc0_D7
Dimensione 109 kB
Formato Icaro
109 kB Icaro   Visualizza/Apri
Sc3_S1.leto

non accessibile

Descrizione: Case study 1_Energy model Sc3_S1
Dimensione 131 kB
Formato Leto
131 kB Leto   Visualizza/Apri
Sc3_D7.icaro

non accessibile

Descrizione: Case study 1_Energy model Sc3_D7
Dimensione 109 kB
Formato Icaro
109 kB Icaro   Visualizza/Apri
Sc0_S1.leto

non accessibile

Descrizione: Case study 2_Energy model S1
Dimensione 113 kB
Formato Leto
113 kB Leto   Visualizza/Apri
Sc0_D1.icaro

non accessibile

Descrizione: Case study 2_Energy model D1
Dimensione 109 kB
Formato Icaro
109 kB Icaro   Visualizza/Apri
Sc0_D3'.icaro

non accessibile

Descrizione: Case study 2_Energy model D3'
Dimensione 109 kB
Formato Icaro
109 kB Icaro   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/154378