Survivability is a key factor both in military scenarios, where a generic platform has to operate in hostile environments, and in civil applications, one example being to save lives during terroristic attacks and natural catastrophes. However, the approach to survivability is very complex since involving the outcome of a whole system (that strongly acts as a complex interaction of several subsystems) with respect to an extreme event. For this reason an approach to vulnerability is generally faced by means of a statistical frame, but still it reveals very complex due to the fact that it requires knowledge in the field of extreme loading condition design and capabilities in managing a large amount of data. The present thesis is therefore aimed at defining a methodological approach, that merges the two beforementioned topics, exploiting an actual and relevant system mainly subjected to several types of impulsive loads. In the first part of the present thesis an already existing original Survivability Software to API projectiles has been consolidated and improved, and an extension to assessing the vulnerability of a generic platform to proximity-explosive threats has been developed. The original software has been improved in terms of ray tracing algorithm and computation procedure and upgraded with three original modules, one related to the fleet management in hostile environments, one aimed at taking into account the redundancy between parts, lastly a module for assessing the vulnerability in a multi-hit scenario has been implemented. Dealing with the explosive threats, two effects can lead to the platform to be killed, one being the penetration by fragments, which is approached using the updated projectile and multi-hit modules of the software, the other one being the effects of the blast wave originated from the detonation of high explosive material, tackled with fully analytical original modules that predict the pressure distribution on the platform and evaluate the survivability of the critical area facing the blast wave. This topic leads to the second part of the present thesis, which deals with the numerical simulation of metal panels under impulsive loading aimed at validating the analytical procedure implemented in the Survivability Software and at identifying an accurate method to evaluate the failure of the critical panel facing the blast load. The software used in this last part of the thesis are LS-DYNA® and ANSYS AUTODYN®.
La sopravvivenza è un fattore chiave sia in scenari militari, dove un mezzo si trova a lavorare in ambienti ostili, sia in applicazioni civili, ad esempio nel caso di attacchi terroristici e catastrofi naturali. Tuttavia, l’approccio alla valutazione della sopravvivenza è molto complesso in quanto considera la risposta di un intero sistema (che dipende dalla forte interazione tra i diversi sottosistemi di cui è composto) a eventi estremi. Per queste ragioni, tipicamente la vulnerabilità di una piattaforma è valutata in un quadro statistico, che a sua volta si rivela complesso dal momento che richiede conoscenze dei fenomeni coinvolti in situazioni di carichi estremi e la manipolazione di grandi moli di dati. Questa tesi ha dunque lo scopo di definire un approccio metodologico, che prenda in considerazione gli aspetti descritti in precedenza, che permetta di valutare la risposta di un sistema principalmente soggetto a carichi impulsivi di varia natura. Nella prima parte di questa tesi è stato consolidato e migliorato l’originale Survivability Software sviluppato per la valutazione della sopravvivenza da proiettili perforanti incendiari, inoltre è stata aggiunta l’estensione alla minaccia da missili con spoletta di prossimità. Il software originale è stato migliorato in termini di algoritmo di ray tracing e routine di calcolo e aggiornato con tre nuovi moduli, uno relativo alla gestione della flotta in ambienti ostili, uno con l’obiettivo di prendere in considerazione la ridondanza tra le parti, qualora presente, infine è stato sviluppato un modulo per valutare la vulnerabilità nel caso di scenari multi-hit. Nell’estensione del software relativa ai missili con spoletta di prossimità, due effetti contribuiscono a rendere inoperativa la piattaforma bersaglio: la penetrazione dei frammenti, valutata tramite il modulo multi-hit e i moduli aggiornati richiamati nella procedura relativa alla minaccia da proiettili, e l’effetto dell’onda d’urto originatasi dalla detonazione del materiale esplosivo contenuto nel missile, tema affrontato tramite nuovi moduli completamente analitici atti a predire la distribuzione di pressione sul bersaglio e a valutare la sopravvivenza delle zone critiche investite dall’onda d’urto. Quest’ultimo argomento apre le porte alla seconda parte della tesi, che affronta la simulazione numerica di pannelli metallici sotto carichi impulsivi al fine di validare la procedura analitica implementata nel Survivability Software e con lo scopo di identificare un metodo accurato per valutare il cedimento del pannello critico investito dall’onda d’urto. I software utilizzati in quest’ultima parte della tesi sono LS-DYNA® e ANSYS AUTODYN®.
Vulnerability assessment to impulsive loadings : analytical software development and numerical simulations
LOMAZZI, LUCA
2018/2019
Abstract
Survivability is a key factor both in military scenarios, where a generic platform has to operate in hostile environments, and in civil applications, one example being to save lives during terroristic attacks and natural catastrophes. However, the approach to survivability is very complex since involving the outcome of a whole system (that strongly acts as a complex interaction of several subsystems) with respect to an extreme event. For this reason an approach to vulnerability is generally faced by means of a statistical frame, but still it reveals very complex due to the fact that it requires knowledge in the field of extreme loading condition design and capabilities in managing a large amount of data. The present thesis is therefore aimed at defining a methodological approach, that merges the two beforementioned topics, exploiting an actual and relevant system mainly subjected to several types of impulsive loads. In the first part of the present thesis an already existing original Survivability Software to API projectiles has been consolidated and improved, and an extension to assessing the vulnerability of a generic platform to proximity-explosive threats has been developed. The original software has been improved in terms of ray tracing algorithm and computation procedure and upgraded with three original modules, one related to the fleet management in hostile environments, one aimed at taking into account the redundancy between parts, lastly a module for assessing the vulnerability in a multi-hit scenario has been implemented. Dealing with the explosive threats, two effects can lead to the platform to be killed, one being the penetration by fragments, which is approached using the updated projectile and multi-hit modules of the software, the other one being the effects of the blast wave originated from the detonation of high explosive material, tackled with fully analytical original modules that predict the pressure distribution on the platform and evaluate the survivability of the critical area facing the blast wave. This topic leads to the second part of the present thesis, which deals with the numerical simulation of metal panels under impulsive loading aimed at validating the analytical procedure implemented in the Survivability Software and at identifying an accurate method to evaluate the failure of the critical panel facing the blast load. The software used in this last part of the thesis are LS-DYNA® and ANSYS AUTODYN®.File | Dimensione | Formato | |
---|---|---|---|
Luca_Lomazzi_894016.pdf
non accessibile
Descrizione: Tesi
Dimensione
7.8 MB
Formato
Adobe PDF
|
7.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/154468