Turbine blades are one of the most critical components in gas turbine engines since they are exposed to large mechanical and thermal loads, leading to high stresses which can reduce the overall engine life and reliability. The present thesis focuses on the rib-turbulated internal cooling technique and provides a detailed aerothermal characterization of the cooling passages typically employed in modern turbine blades. A critical aspect of this work is the fact that the whole system is set in rotation in order to create flow conditions similar to the ones encountered in real internal cooling channels, where the Coriolis and the centrifugal forces strongly modify the flow dynamics. The novelty of the present investigation lies in the numerical methodology, since PowerFLOW, a Lattice-Boltzmann equation solver, is employed. This computational method seems particularly promising because of its intrinsic unsteady nature, its low artificial diffusion and its high computational efficiency. Previous studies have demonstrated the limitations of Reynolds Averged Navier-Stokes (RANS) models to account for complex flow fields involving large flow separations. On the other hand, "scale-resolving" methods such as Navier-Stokes Large Eddy Simulation (LES) have shown great potential in predicting detailed flow features, but their computational cost is often unaffordable in most industrial applications due to the high resolution demands for wall-bounded flows. In this context, the Lattice-Boltzmann solver PowerFLOW which leverages on a Very Large Eddy Simulation (LB-VLES) approach may offer a valid alternative to the traditional numerical methods. Simulations are benchmarked to experimental cooling channel studies performed at the Von Karman Institute for Fluid Dynamics and provide a deeper understanding of the complete three-dimensional flow field. Results are also compared to high fidelity LES computation. The analysis shows a positive agreement with the available experimental and numerical data, highlighting the accuracy of the solver for aerodynamic and thermal prediction. The reduced computational cost compared to LES based methods offers an interesting perspective for future developments.
Le pale di turbina costituiscono componenti particolarmente critici all'interno dei moderni motori aeronautici, in quanto sono sottoposte a ingenti sforzi meccanici e termici che possono ridurre l'affidabilità e la vita operativa del propulsore. Il presente lavoro di tesi è volto all'analisi della tecnica di raffreddamento per mezzo di condotti interni dotati di promotori di turbolenza e ne fornisce una dettagliata caratterizzazione aerotermica. Un aspetto importante di questa indagine consiste nel fatto che il sistema viene posto in rotazione, in modo da replicare le condizioni all'interno dei canali di raffreddamento delle moderne palette di turbina aeronautiche, dove la forza di Coriolis e la forza centrifuga modificano notevolmente la dinamica della corrente. La particolarità di questo lavoro consiste nella metodologia di calcolo, in quanto il programma PowerFLOW utilizzato per le simulazioni è basato su un metodo Lattice-Boltzmann. Questa tecnica computazionale sembra particolarmente promettente per via della sua intrinseca natura instazionaria e per l'elevata efficienza computazionale. Numerosi studi passati hanno mostrato le limitazioni dei modelli di tipo Reynolds Averaged Navier-Stokes (RANS) per l'analisi di complessi campi di moto instazionari caratterizzati da ampie zone di separazione. D'altra parte, i cosiddetti metodi "scale-resolving", tra i quali si possono annoverare i modelli Navier-Stokes Large Eddy Simulation (LES), si sono dimostrati molto validi per la caratterizzazione di correnti complesse, ma il loro impegno computazionale risulta spesso troppo oneroso per la maggior parte delle applicazioni industriali. In questo contesto, i metodi Lattice-Boltzmann ed in particolare il solutore PowerFLOW che sfrutta un approccio di tipo Very Large Eddy Simulation (LB-VLES) può offrire una valida alternativa ai metodi computazionali tradizionali. Le simulazioni sono validate tramite studi sperimentali effettuati presso il Von Karman Institute for Fluid Dynamics e forniscono una comprensione più completa del campo di moto, che sperimentalmente era stato investigato solo in zone molto limitate del dominio. I risultati sono anche confrontati con quelli ottenuti tramite calcoli ad alta fedeltà di tipo LES. L’analisi mostra un ottimo accordo con i risultati presenti in letteratura, denotando quindi l'adeguatezza del solutore per l’indagine aerotermica di complesse correnti instazionarie. Il costo computazionale più contenuto rispetto a calcoli tradizionali di tipo LES apre ad interessanti prospettive future legate allo studio di configurazioni ancor più realistiche.
Aerothermal simulation of gas turbine blade cooling channel using Lattice-Boltzmann method
DAMIOLA, LUCA
2018/2019
Abstract
Turbine blades are one of the most critical components in gas turbine engines since they are exposed to large mechanical and thermal loads, leading to high stresses which can reduce the overall engine life and reliability. The present thesis focuses on the rib-turbulated internal cooling technique and provides a detailed aerothermal characterization of the cooling passages typically employed in modern turbine blades. A critical aspect of this work is the fact that the whole system is set in rotation in order to create flow conditions similar to the ones encountered in real internal cooling channels, where the Coriolis and the centrifugal forces strongly modify the flow dynamics. The novelty of the present investigation lies in the numerical methodology, since PowerFLOW, a Lattice-Boltzmann equation solver, is employed. This computational method seems particularly promising because of its intrinsic unsteady nature, its low artificial diffusion and its high computational efficiency. Previous studies have demonstrated the limitations of Reynolds Averged Navier-Stokes (RANS) models to account for complex flow fields involving large flow separations. On the other hand, "scale-resolving" methods such as Navier-Stokes Large Eddy Simulation (LES) have shown great potential in predicting detailed flow features, but their computational cost is often unaffordable in most industrial applications due to the high resolution demands for wall-bounded flows. In this context, the Lattice-Boltzmann solver PowerFLOW which leverages on a Very Large Eddy Simulation (LB-VLES) approach may offer a valid alternative to the traditional numerical methods. Simulations are benchmarked to experimental cooling channel studies performed at the Von Karman Institute for Fluid Dynamics and provide a deeper understanding of the complete three-dimensional flow field. Results are also compared to high fidelity LES computation. The analysis shows a positive agreement with the available experimental and numerical data, highlighting the accuracy of the solver for aerodynamic and thermal prediction. The reduced computational cost compared to LES based methods offers an interesting perspective for future developments.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
14.71 MB
Formato
Adobe PDF
|
14.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/154482