The extensive tactical use of heavy armoured vehicles in warfare, has addressed numerous researches to the efficiency of their powerful armaments and their impressive armours. Such researches have culminated today on the development, on one hand, of kinetic energy penetrators, characterized by high aspect ratio and penetration capacity, and on the other hand, in the use of multilayer ceramic-metallic composite armor. The decision to use ceramics as a protective covering material is due to their higher hardness and lower density compared to metals, as well as their extraordinary ability to erode the incoming projectile and, in the best cases, to break it. However, due to their extreme fragility, these ceramics tend to shatter significantly after impact. It is therefore necessary to adopt a tougher support material, such as metal, to support the ceramic and maximize its effects. The need to reduce time, costs and uncertainties, associated with the implementation of experimental campaigns for the design of new protections, has led to the development of tools to predict the interaction between projectile and target. These tools are based on both analytical and numerical models. The present thesis work is therefore aimed at investigating the phenomenon of penetration of kinetic energy projectiles against a target consisting of a thick ballistic ceramic tile backed with a semi-infinite extension metal layer. In this regard, an analytical and a numerical model have been realized. The analytical model consists of two parts, one is based on the modified Bernoulli equation, and describes the phase of penetration of the projectile into the ceramic tile, the other is based on the Cavity Expansion Theory, and is used to describe the subsequent phase of penetration into the metal backing. Subsequently a numerical model based on a fully-Lagrangian finite-element analysis was implemented using the LS-DYNA software, showing a good correlation with the results from the analytical model. Finally, the two models were validated by comparing the penetration values reached by the projectile with the data of several experimental tests taken from the literature, with which they showed good agreement.
Il largo impiego tattico in ambito bellico di pesanti veicoli corazzati, ha spinto negli anni a numerose ricerche sullo sviluppo e l'efficientamento dei loro potenti armamenti e delle loro imponenti armature. Tali ricerche sono culminate ad oggi nello sviluppo, da un lato di penetratori ad energia cinetica dotati di elevata capacità di penetrazione, e dall'altro, nell'uso di armature composite multistrato in ceramica e metallo. La scelta di utilizzare la ceramica come materiale di rivestimento protettivo è dovuta alla sua maggiore durezza e minore densità rispetto ai metalli, nonché alla straordinaria capacità dimostrata di erodere il proiettile. Tuttavia, a causa dell'estrema fragilità che le caratterizza, queste ceramiche tendono a frantumarsi significativamente dopo l'impatto. È quindi necessario adottare un materiale di supporto più resistente, come il metallo, per sostenere la ceramica e massimizzarne gli effetti. La necessità di ridurre tempi, costi e incertezze, associata alla realizzazione di campagne sperimentali per la progettazione di nuove protezioni, ha portato allo sviluppo di strumenti per prevedere l'interazione tra proiettile e bersaglio. Questi strumenti si basano su modelli sia analitici che numerici. Il presente lavoro di tesi è dunque finalizzato ad indagare il fenomeno della penetrazione di proiettili ad energia cinetica contro un bersaglio costituito da una spessa piastra di ceramica balistica supportata da uno strato metallico di estensione semi-infinita. A questo proposito sono stati realizzati un modello analitico e un modello numerico. Il modello analitico è costituito da due parti, una basata sull'equazione di Bernoulli modificata che descrive la fase di penetrazione del proiettile nella piastra ceramica, l'altra basata sulla teoria della Cavity Expansion, utilizzata per descrivere la successiva fase di penetrazione nel supporto metallico. Successivamente, per mezzo del software LS-DYNA, è stato implementato un modello numerico basato su un'analisi ad elementi finiti lagrangiano, ottenendo una buona correlazione con i risultati del modello analitico. Infine, i due modelli sono stati validati confrontando i valori di penetrazione raggiunti dal proiettile con i dati di diversi test sperimentali tratti dalla letteratura, con i quali hanno mostrato una buona corrispondenza.
Analytical and numerical modelling of long rods impacting on ceramic/metal targets
SORESI, LORENZO
2018/2019
Abstract
The extensive tactical use of heavy armoured vehicles in warfare, has addressed numerous researches to the efficiency of their powerful armaments and their impressive armours. Such researches have culminated today on the development, on one hand, of kinetic energy penetrators, characterized by high aspect ratio and penetration capacity, and on the other hand, in the use of multilayer ceramic-metallic composite armor. The decision to use ceramics as a protective covering material is due to their higher hardness and lower density compared to metals, as well as their extraordinary ability to erode the incoming projectile and, in the best cases, to break it. However, due to their extreme fragility, these ceramics tend to shatter significantly after impact. It is therefore necessary to adopt a tougher support material, such as metal, to support the ceramic and maximize its effects. The need to reduce time, costs and uncertainties, associated with the implementation of experimental campaigns for the design of new protections, has led to the development of tools to predict the interaction between projectile and target. These tools are based on both analytical and numerical models. The present thesis work is therefore aimed at investigating the phenomenon of penetration of kinetic energy projectiles against a target consisting of a thick ballistic ceramic tile backed with a semi-infinite extension metal layer. In this regard, an analytical and a numerical model have been realized. The analytical model consists of two parts, one is based on the modified Bernoulli equation, and describes the phase of penetration of the projectile into the ceramic tile, the other is based on the Cavity Expansion Theory, and is used to describe the subsequent phase of penetration into the metal backing. Subsequently a numerical model based on a fully-Lagrangian finite-element analysis was implemented using the LS-DYNA software, showing a good correlation with the results from the analytical model. Finally, the two models were validated by comparing the penetration values reached by the projectile with the data of several experimental tests taken from the literature, with which they showed good agreement.File | Dimensione | Formato | |
---|---|---|---|
Analytical and Numerical Modelling of Long Rods Impacting On Ceramic-Metal Targets.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
9.87 MB
Formato
Adobe PDF
|
9.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/154500