The current resurgence of interest in hypersonic technologies has justified the present inquiry into the commonly employed thermochemical nonequilibrium models within computational fluid dynamic (CFD) simulations. The results for a set of vibrational relaxation and dissociation models will be compared, focusing on oxygen flows with an emphasis on O2−O system, whose real physical behavior tends to depart from the conventional modeling. The low fidelity, but computationally efficient Park’s two temperature model is the widely used approach in hypersonic analysis and, for this reason, it will also be exploited in this work. In light of this, this dissertation aims at focusing on the following two aspects. Firstly, a deep analysis of the open-source two-temperature CFD hy2Foam solver will be presented as well as an extension of it with new useful models for hypersonic analysis. Secondly, for the specific O2−O system investigation, the empirical model proposed by Shatalov et al., which better fits with experimental data, will be compared with the more conventional Millikan-White and Park’s systematics, in terms of oxygen vibrational relaxation times and dissociation rate constants under thermal and chemical nonequilibrium conditions. Benchmarking has firstly been performed for zero-dimensional test cases; subsequently one-dimensional scenarios have been exploited to compare the simulated results of the various models with experimental data for several post-normal shock test cases. Finally, progressive contributions of the various physico-chemical mechanisms that characterize the hypersonic flow modeling have been analyzed within a bi-dimensional scenario, with specific investigations in the shock stand-off distance, peaks in thermal loads, skin friction drag and forces on the 2-D body considered.
L’attuale rinascita dell’interesse per le tecnologie ipersoniche ha giustificato la presente indagine sui modelli di non-equilibrio termochimici comunemente utilizzati per le simulazioni fluidodinamiche (CFD). Verranno confrontati i risultati per una serie di modelli di rilassamento vibrazionale e di dissociazione chimica, ponendo l’attenzione su flussi di puro ossigeno ed in particolare sulla coppia O2−O, il cui reale comportamento fisico tende a discostarsi dalla modellazione convenzionale. Il modello di Park a due temperature, considerato di bassa affidabilità, ma estremamente efficiente dal punto di vista computazionale, è l’approccio ampiamente utilizzato per l’analisi di flussi ipersonici e, per questo motivo, verrà largamente impiegato anche in questo lavoro. Alla luce di ciò, la presente tesi si propone di affrontare i seguenti due aspetti cruciali. Innanzitutto, verrà presentata un’approfondita analisi del solutore CFD open-source a due temperature hy2Foam, proponendo inoltre un’estensione di tale codice con diversi altri modelli essenziali per l’analisi ipersonica. In secondo luogo, per la specifica valutazione del sistema O2−O, il modello empirico proposto da Shatalov et al., che meglio si adatta ai dati sperimentali, verrà confrontato con il più convenzionale modello sistematico di Millikan-White e Park, in termini di tempi di rilassamento vibrazionale dell’ossigeno e costanti di dissociazione in condizioni di non-equilibrio termico e chimico. L’analisi comparativa è stata inizialmente eseguita per casi test zero-dimensionali e successivamente per problemi monodimensionali, impiegati per il confronto dei risultati simulati dei vari modelli studiati con i dati sperimentali disponibili per diversi casi di flusso post onda d’urto. Infine, i contributi progressivi dei vari meccanismi fisico-chimici che caratterizzano la modellazione dei flussi ipersonici sono stati analizzati per uno contesto puramente bidimensionale, con precise indagini sulla distanza della bow shock wave, sui picchi dei carichi termici, sulla resistenza per attrito viscoso e sulle forze agenti sul corpo 2-D considerato.
Effects of nonequilibirum oxygen dissociation and vibrational relaxation in hypersonic flows
ZANARDI, IVAN
2018/2019
Abstract
The current resurgence of interest in hypersonic technologies has justified the present inquiry into the commonly employed thermochemical nonequilibrium models within computational fluid dynamic (CFD) simulations. The results for a set of vibrational relaxation and dissociation models will be compared, focusing on oxygen flows with an emphasis on O2−O system, whose real physical behavior tends to depart from the conventional modeling. The low fidelity, but computationally efficient Park’s two temperature model is the widely used approach in hypersonic analysis and, for this reason, it will also be exploited in this work. In light of this, this dissertation aims at focusing on the following two aspects. Firstly, a deep analysis of the open-source two-temperature CFD hy2Foam solver will be presented as well as an extension of it with new useful models for hypersonic analysis. Secondly, for the specific O2−O system investigation, the empirical model proposed by Shatalov et al., which better fits with experimental data, will be compared with the more conventional Millikan-White and Park’s systematics, in terms of oxygen vibrational relaxation times and dissociation rate constants under thermal and chemical nonequilibrium conditions. Benchmarking has firstly been performed for zero-dimensional test cases; subsequently one-dimensional scenarios have been exploited to compare the simulated results of the various models with experimental data for several post-normal shock test cases. Finally, progressive contributions of the various physico-chemical mechanisms that characterize the hypersonic flow modeling have been analyzed within a bi-dimensional scenario, with specific investigations in the shock stand-off distance, peaks in thermal loads, skin friction drag and forces on the 2-D body considered.File | Dimensione | Formato | |
---|---|---|---|
textThesis.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
6.49 MB
Formato
Adobe PDF
|
6.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/154571