Chemical Looping Combustion (CLC) is an innovative carbon capture technology among the most interesting ones. It consists of an alternative method of combustion that allows to obtain a product flow of CO2 and H2O, separable by water condensation. In order to achieve this, the contact between air and fuel is avoided, and a metal (nickel in this case) works as an oxygen carrier inside a redox reactors system. The purpose of this work is to investigate this technology applied to a zero emission combined cycle, powered by two types of fuels – natural gas and syngas from coal gasification - through a parametric analysis of some crucial variables for the chemical equilibrium of the reaction and for the system global arrangements. The results are reached through numerical simulations of CLC-based plants models for power production, implemented bymeans of the GS program. The software has been developed internally by the Department of Energy of Politecnico in Milan. The results obtained show the theoretical validity of the foundamentals of this technology. Moreover the paper underlines some critical aspects emerged for some systems and offers a detailed description of the operating characteristics of the more performing configurations. Finally, an additional case has been studied, on a different technology for the integrated production of hydrogen and elettricity -named Chemical Looping Reforming (CLR). The aim of this configuration is to overcome the limit of the maximum temperature of the gas turbine cycle due to the metal resistance, through an additional combustion carried out by means of the H2 produced by CLR. The last study is to be considered a first step for further elaborations and improvement of the technology.
La Chemical Looping Combustion (CLC) si inserisce tra le tecniche innovative per la cattura delle CO2 come una delle più performanti. Essa consiste in un metodo alternativo di combustione tramite cui ottenere un flusso di prodotti costituito da CO2 e H2O separabile tramite condensazione. Per far questo si evita il contatto diretto tra aria e combustibile e si utilizza un metallo (nel caso in esame nichel) che funge da trasportatore di ossigeno all’interno di un sistema di reattori red-ox. Scopo dell’elaborato è lo studio di questa tecnica applicata ad un ciclo combinato zero emission alimentato con due tipologie di combustibile, gas naturale e syngas, attraverso un’analisi parametrica di variabili determinanti per l’equilibrio chimico delle reazioni e con evidente influenza sull’assetto complessivo. I risultati sono ottenuti da simulazioni numeriche relative a impianti di produzione di potenza, implementati in ogni particolare attraverso l’uso di un programma (GS) sviluppato all’interno del Dipartimento di Energia. Le conclusioni ottenute dimostrano l’effettiva validità di questa tecnologia ponendo l’attenzione alle criticità presentatesi durante lo studio e definendo le caratteristiche d’esercizio degli assetti dimostratisi più performanti. Viene mostrata, inoltre, una variante conseguente direttamente dalla teoria di base su cui si fonda la CLC stessa, applicata alla produzione combinata di idrogeno ed elettricità da gas naturale. Fine di quest’ultima analisi è sopperire alla TIT a cui si esercisce l’impianto, limitata dalla resistenza dei metalli utilizzati. I risultati riportati in tale sezione vogliono aprire la strada ad un ulteriore ricerca su questa tecnologia, denominata Chemical Looping Reforming (CLR), e devono essere considerati come un punto di partenza per ulteriori approfondimenti e modifiche di miglioramento.
Analisi di impianti con processo chemical looping per generazione elettrica da gas naturale e syngas con cattura della CO2
FAUSTINELLI, MASCIA;SPINELLI, MAURIZIO
2009/2010
Abstract
Chemical Looping Combustion (CLC) is an innovative carbon capture technology among the most interesting ones. It consists of an alternative method of combustion that allows to obtain a product flow of CO2 and H2O, separable by water condensation. In order to achieve this, the contact between air and fuel is avoided, and a metal (nickel in this case) works as an oxygen carrier inside a redox reactors system. The purpose of this work is to investigate this technology applied to a zero emission combined cycle, powered by two types of fuels – natural gas and syngas from coal gasification - through a parametric analysis of some crucial variables for the chemical equilibrium of the reaction and for the system global arrangements. The results are reached through numerical simulations of CLC-based plants models for power production, implemented bymeans of the GS program. The software has been developed internally by the Department of Energy of Politecnico in Milan. The results obtained show the theoretical validity of the foundamentals of this technology. Moreover the paper underlines some critical aspects emerged for some systems and offers a detailed description of the operating characteristics of the more performing configurations. Finally, an additional case has been studied, on a different technology for the integrated production of hydrogen and elettricity -named Chemical Looping Reforming (CLR). The aim of this configuration is to overcome the limit of the maximum temperature of the gas turbine cycle due to the metal resistance, through an additional combustion carried out by means of the H2 produced by CLR. The last study is to be considered a first step for further elaborations and improvement of the technology.File | Dimensione | Formato | |
---|---|---|---|
2011_03_Spinelli_Faustinelli.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: teso della tesi
Dimensione
6.59 MB
Formato
Adobe PDF
|
6.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/15481