Spacecraft Formation Flying has become, in the last decade, a topic of great interest in the space mission design: future new horizons in that area will further exploit the huge possibilities of this kind of spacecraft configuration, which consist in lowering inter-satellite range to allow new possible spacecraft operations. Hence, autonomous control is the most important field that must be developed, in order to provide suitable safety and performances at these small distances. The aim of this work is to apply one of the current major approaches to solve nonlinear control problems, the State-Dependent Riccati Equation technique, for the relative orbital and attitude dynamics of Formation sub-satellites, making use of a coupling actuator device. The approach has consisted in designing a proper thruster set as actuator system and building a true-life Simulator for the relative deputy satellite motion, that can be used for every kind of Earth orbit Formation, in order to implement a nonlinear SDRE control system algorithm. All the major aspects of actuators modelization and sensors set choice have been considered, and the design of controller and Kalman Filter takes into consideration the important practical issue of SDRE timing. In particular, continuous electrical low-thrust and pulsed chemical high-thrust have both been considered for the actuator implementation. Simulations have been conducted choosing some typical sample mission requirements, and using a new kind of J2-free Formation long-period maintenance strategy: in particular, ESA Proba-3 requirements have been used as up-to-date test-bed for the designed SDRE coupled relative control system. Results obtained have proved that this coupled control system is a feasible actuator solution for Formation-Keeping and attitude pointing: low thrust propulsion has resulted the best solution, and has the advantage of not only do not compromise pointing performance, but also to allow to intrinsically moderate high frequency aspects of attitude control. In conclusion, SDRE methodology provides good performances and advanced possibilities to deal with relative control of future complex Formation Flying missions.
Il volo in Formazione di satelliti è diventato, nell’ultimo decennio, una tematica di grande interesse nel progetto delle missioni spaziali: nell’immediato futuro si sfrutteranno ancora di più le enormi possibilità offerte da questa architettura, mantenendo i satelliti sempre più vicini per compiere complesse operazioni nello spazio. Quindi, il controllo automatico è la maggiore area di sviluppo, in quanto deve garantire adeguate sicurezza e prestazioni a tali ristrette distanze. L’obiettivo del mio lavoro è di applicare uno dei moderni metodi per il controllo non lineare, la soluzione dell’equazione di Riccati in funzione dello stato (SDRE), alla dinamica relativa orbitale e d’assetto dei sotto-satelliti nelle Formazioni, utilizzando degli attuatori accoppiati. Il metodo è consistito nel progetto di un sistema di razzetti come attuatori e nella costruzione di un simulatore del moto relativo per satelliti in Formazione, utilizzabile per tutte le orbite terrestri, in cui viene implementato l’algoritmo di controllo non lineare SDRE. Tutti gli aspetti per la modellizzazione degli attuatori e la scelta dei sensori sono stati considerati, ed il progetto di controllore e filtro di Kalman considera l’importante problematica della temporizzazione dell’algoritmo SDRE; inoltre, sia la propulsione elettrica che quella chimica ad alta spinta pulsata vengono testate come sistema di attuazione. Le simulazioni sono state condotte con tipici requisiti di missione, ed usando una nuova strategia per il mantenimento di Formazioni senza controllo di J2: in particolare, la missione Proba-3 dell’ESA è stata usata come banco di prova per testare il sistema di controllo progettato. I risultati ottenuti hanno dimostrato che il controllo accoppiato è un soluzione fattibile per il mantenimento orbitale e di puntamento: la propulsione elettrica è risultata la soluzione migliore, avendo il grande vantaggio di non pregiudicare le prestazioni di puntamento, ma anche di moderare intrinsecamente in alta frequenza il controllo d’assetto. In conclusione, il metodo SDRE fornisce buone prestazioni e possibilità avanzate per il controllo relativo delle future e complesse missioni di volo in Formazione.
Coupled orbital and attitude SDRE control system for spacecraft formation flying
ZAMARO, MATTIA
2009/2010
Abstract
Spacecraft Formation Flying has become, in the last decade, a topic of great interest in the space mission design: future new horizons in that area will further exploit the huge possibilities of this kind of spacecraft configuration, which consist in lowering inter-satellite range to allow new possible spacecraft operations. Hence, autonomous control is the most important field that must be developed, in order to provide suitable safety and performances at these small distances. The aim of this work is to apply one of the current major approaches to solve nonlinear control problems, the State-Dependent Riccati Equation technique, for the relative orbital and attitude dynamics of Formation sub-satellites, making use of a coupling actuator device. The approach has consisted in designing a proper thruster set as actuator system and building a true-life Simulator for the relative deputy satellite motion, that can be used for every kind of Earth orbit Formation, in order to implement a nonlinear SDRE control system algorithm. All the major aspects of actuators modelization and sensors set choice have been considered, and the design of controller and Kalman Filter takes into consideration the important practical issue of SDRE timing. In particular, continuous electrical low-thrust and pulsed chemical high-thrust have both been considered for the actuator implementation. Simulations have been conducted choosing some typical sample mission requirements, and using a new kind of J2-free Formation long-period maintenance strategy: in particular, ESA Proba-3 requirements have been used as up-to-date test-bed for the designed SDRE coupled relative control system. Results obtained have proved that this coupled control system is a feasible actuator solution for Formation-Keeping and attitude pointing: low thrust propulsion has resulted the best solution, and has the advantage of not only do not compromise pointing performance, but also to allow to intrinsically moderate high frequency aspects of attitude control. In conclusion, SDRE methodology provides good performances and advanced possibilities to deal with relative control of future complex Formation Flying missions.File | Dimensione | Formato | |
---|---|---|---|
2011_03_Zamaro.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
4.74 MB
Formato
Adobe PDF
|
4.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/15722