The increasing interest in the study of asteroids and Near Earth Objects in general, gives rise to the need for investigating different and new strategies to investigate the environment around them. In recent years several studies have considered the possibility of increasing the autonomy and the safety of the missions in deep space by introducing the use of multiple spacecraft. The aim of this thesis is the exploitation of an analytical model to recover the gravity field of these small bodies through autonomous and relative navigation between two spacecraft. Unlike other studies, to support the process of estimating the gravitation field, an analytical conversion is used between the osculating elements and the relative orbital elements are employed to describe the relative dynamics. The aim is to provide the model with the most accurate information possible to facilitate the assessment of gravitational field coefficients. The use of the mean elements allows to obtain a propagation of the dynamics of the satellite without integration, reaching at the same time an accurate propagation for longer periods of time. In this work two filters are used to estimate the coefficients of the spherical harmonics of the gravity field of the target: a batch least square method and a Kalman filter. Assuming that is not known the accuracy with which the initial state is not known, the main objective of the batch filter is to reach a final solution independent on the initial conditions and the level of confidence with which they are known. In order to verify that this hypothesis is respected, a statistical analysis is carried out on a sample of cases analysing the mean value and the standard deviation obtained. This type of filter is in fact more robust when one is in the presence of initial conditions, in the case under investigation the zonal coefficients of the spherical harmonics, with large errors with respect to the true values. With the Extended Kalman filter, however, the solution found is refined to reduce both the relative and the absolute errors. The model used to build the algorithms of those filters is simplified in sense that it includes the zonal terms up to fifth grade only. To test the proposed model three different asteroids have been selected: Eros, Bennu and Ryugu. The three asteroids differ in size, shape, and gravity field; however Bennu and Ryugu share a smaller size and a more regular shape with respect to Eros. For the determination of the orbits to be used, an analysis on the frozen orbits with respect to the zonal coefficients up to fifth order is performed. This choice is consistent with the model used for the filter. As a result, the orbits selected are polar to guarantee a better coverage with respect to the body under examination and stable for a time enough to enable safe autonomous formation flying.
L’interesse crescente nello studio degli asteroidi e dei Near Earth Objects in generale ha dato origine alla necessità di trovare nuove e diverse strategie per indagare l’ambiente intorno ad essi. Negli ultimi anni diversi studi hanno considerato la possibilità di aumentare l’autonomia e la sicurezza delle missioni nello spazio profondo introducendo l’utilizzo di più satelliti. L’obiettivo di questa tesi è l’utilizzo di un modello analitico per stimare il campo gravitazione attorno a questi corpi minori attraverso la navigazione autonoma e relativa tra due satelliti. A differenza di altri studi, per supportare il processo di stima del campo gravitazione, viene utilizzata una conversione analitica tra gli elementi osculatori e gli elementi medi, che sono utilizzati per descrivere la dinamica relativa; si vogliono infatti fornire al modello le informazioni più accurate possibili per facilitare la valutazione dei coefficienti del campo gravitazionale. L’utilizzo degli elementi medi permette di ottenere una propagazione della dinamica del satellite senza doverli integrare, raggiungendo allo stesso tempo una propagazione accurata per periodi temporali più lunghi. In questo lavoro sono stati utilizzati due filtri per studiare i coefficienti delle armoniche sferiche del campo gravitazionale dei target: un filtro batch e un filtro kalman. Partendo dall’ipotesi di non poter sapere l’accuratezza con cui lo stato iniziale è noto, l’obiettivo principale del filtro batch è quello di raggiungere una soluzione finale indipendente dalle condizioni iniziali e dal livello di confidenza con cui le stesse sono note; per verificare che questa ipotesi sia soddisfatta, è stata effettuata un’analisi statistica su un campione di casi analizzando il valore medio ottenuto e la deviazione standard. Questa tipologia di filtro risulta infatti più robusta quando si è in presenza di condizioni iniziali, nel caso in esame i coefficienti zonali delle armoniche sferiche, con grandi errori rispetto al loro vero valore. Con il filtro di Kalman esteso, invece, si vuole rifinire la soluzione trovata riducendo sia l’errore assoluto che quello relativo. Il modello utilizzato per costruire gli algoritmi di questi filtri è semplificato, nel senso che comprende solo i termini zonali fino al quinto grado. Per testare il modello sono stati selezioni tre diversi target: Eros, Bennu e Ryugu. I tre asteroidi hanno caratteristiche differenti per dimensioni, forma e campo gravitazionale; tuttavia Bennu e Ryugu sono accomunati da dimensioni contenute e una forma più regolare rispetto ad Eros. Per la determinazione delle orbite da utilizzare, è stata condotta un’analisi sulle orbite frozen rispetto ai termini zonali fino al quinto grado. Questa scelta è consistente con il modello utilizzato per i filtri. Le orbite selezionate sono polari per garantire una migliore copertura rispetto al corpo che si sta analizzando e sono stabili per un tempo sufficiente a garantire un sicuro volo in formazione autonomo.
Recovery of the gravity field of a small body through autonomous and relative navigation between two spacecraft
Bassani, Alessandra
2019/2020
Abstract
The increasing interest in the study of asteroids and Near Earth Objects in general, gives rise to the need for investigating different and new strategies to investigate the environment around them. In recent years several studies have considered the possibility of increasing the autonomy and the safety of the missions in deep space by introducing the use of multiple spacecraft. The aim of this thesis is the exploitation of an analytical model to recover the gravity field of these small bodies through autonomous and relative navigation between two spacecraft. Unlike other studies, to support the process of estimating the gravitation field, an analytical conversion is used between the osculating elements and the relative orbital elements are employed to describe the relative dynamics. The aim is to provide the model with the most accurate information possible to facilitate the assessment of gravitational field coefficients. The use of the mean elements allows to obtain a propagation of the dynamics of the satellite without integration, reaching at the same time an accurate propagation for longer periods of time. In this work two filters are used to estimate the coefficients of the spherical harmonics of the gravity field of the target: a batch least square method and a Kalman filter. Assuming that is not known the accuracy with which the initial state is not known, the main objective of the batch filter is to reach a final solution independent on the initial conditions and the level of confidence with which they are known. In order to verify that this hypothesis is respected, a statistical analysis is carried out on a sample of cases analysing the mean value and the standard deviation obtained. This type of filter is in fact more robust when one is in the presence of initial conditions, in the case under investigation the zonal coefficients of the spherical harmonics, with large errors with respect to the true values. With the Extended Kalman filter, however, the solution found is refined to reduce both the relative and the absolute errors. The model used to build the algorithms of those filters is simplified in sense that it includes the zonal terms up to fifth grade only. To test the proposed model three different asteroids have been selected: Eros, Bennu and Ryugu. The three asteroids differ in size, shape, and gravity field; however Bennu and Ryugu share a smaller size and a more regular shape with respect to Eros. For the determination of the orbits to be used, an analysis on the frozen orbits with respect to the zonal coefficients up to fifth order is performed. This choice is consistent with the model used for the filter. As a result, the orbits selected are polar to guarantee a better coverage with respect to the body under examination and stable for a time enough to enable safe autonomous formation flying.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Alessandra_Bassani.pdf
accessibile in internet per tutti
Dimensione
4.63 MB
Formato
Adobe PDF
|
4.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164322