In the recent years the world of Single Photon Counting (SPC) and Time-Correlated Photon Counting (TCPC) has seen the rise of Single Photon Avalanche Diodes (SPAD) as the solid-state alternative to Photo Multiplier Tubes (PMT) thanks to their higher Photon Detection Efficiency (PDE), compactness, reliability and compatibility. Furthermore, silicon custom technologies make possible to obtain large-area detectors, with excellent performances in terms of Dark Count Rate (DCR), afterpulsing probability, time jitter and detection efficiency over the visible and near infrared regions of light. A significant step in the evolution of this type of detector has been the introduction of the Red-Enhanced SPAD (RE-SPAD), a SPAD able to obtain a remarkable PDE up to 1 µm wavelength (e.g. 40 % at a wavelength of 800 nm), while maintaining a good time jitter (i.e. less than 100 ps FWHM). However, with all the SPADs currently available, it is not possible to obtain a combination of high PDE and low timing jitter at long wavelengths (i.e. larger than 800 nm) due to the low absorption. The number of absorbed photons can be increased by acting on the detector thickness, however, at the expense of other performances, such as the timing resolution and the dissipated power. The main focus of my thesis work is to demonstrate that the problem can be overcome with a side-illuminated detector, in which the light propagates transversally. In this case, the absorption efficiency can be improved by increasing the detector length rather than its thickness. Even better, the thickness of the detector can be reduced to the typical values of the thin SPADs with a potential time jitter of about 30 ps FWHM. To this aim, the SPAD is embedded in a silicon waveguide and the photons generated externally are coupled into it through an optical fiber. Thanks to an upper electrode and a contact region present on one side of the guide, the typical electric field profile of the detector will be present along the thickness of the structure and photons will be able to generate an avalanche. As a first step, the structure inside which the SPAD will be embedded has been simulated in order to predict the behaviour of the system in response to external optical signals. The aim of this optical analysis is to set some parameters of the structure (e.g. the length and the width of the detector, the thickness of the buried oxide, etc.) and to evaluate how critical is the system (e.g. to the surface roughness of the guide, to the coupling between it and the optical fiber, to the substrate properties, etc.). After the optical analysis, a pseudo fabrication process was created and simulated in order to investigate the electrical properties of the detector. Making a definitive or perfect sizing of the detector is well beyond the scope of this work. The aim of this investigation is to understand how the electrical properties of the SPAD are affected by the structure, identify the possible problems, and find the corresponding solutions. For this reason, the doping profiles used in this work, along with the corresponding electric field and breakdown voltages, must be regarded as examples to study the detector properties, rather than final values. For the very same reason a complete and realistic fabrication process has not been simulated yet. The simulations that I performed in this thesis work demonstrate how promising the solution can be. In fact, the system results to be robust and a percentage of absorbed photons of about 85 % is obtainable with avalanche breakdown probabilities between 0.5 and 0.95 at applied overvoltages between units and tens of Volts. The percentage loss at the silicon waveguide input, given by the photons that are not able to trigger an avalanche, can be eventually lowered down to about 2 % with a zero triggering efficiency region of 200 nm. The last part of this thesis work was dedicated to the modeling of the POCl3 deposition process, a technique that is used in some SPADs’ fabrication processes to manufacture the cathode regions.
Negli ultimi anni il mondo del Single Photon Counting (SPC) e del Time-Correlated Photon Counting (TCPC) ha visto la crescita dei Single Photon Avalanche Diodes (SPAD) come alternativa a stato solido ai Photo Multiplier Tubes (PMT) grazie alla loro Photon Detection Efficiency (PDE), compattezza, affidabilità e compatibilità. Inoltre, tecnologie al silicio personalizzate rendono possibile ottenere rivelatori con grande area e eccellenti performance in termini di Dark Count Rate (DCR), probabilità di afterpulsing, jitter temporale e efficienza di rivelazione nel range del visibile e del vicino infrarosso. Un passo significativo nell’evoluzione di questo tipo di rivelatore è stato l’introduzione del Red-Enhanced SPAD (RE-SPAD), uno SPAD capace di ottenere notevoli PDE fino a 1 µm di lunghezza d’onda (per esempio 40 % ad una lunghezza d’onda di 800 nm) mantenendo nel frattempo un buon jitter temporale (per esempio minore di 100 ps FWHM). Comunque, con tutti gli SPAD attualmente disponibili non è possibile ottenere una combinazione di alta PDE e basso jitter temporale ad alte lunghezze d’onda (maggiori di 800 nm) a causa del basso assorbimento. Il numero di fotoni assorbiti può essere aumentato andando ad agire sullo spessore del dispositivo, comunque, a spese di altre prestazioni, come la risoluzione temporale e la potenza dissipata. Il principale obiettivo del mio lavoro di tesi è dimostrare che il problema può essere superato con un rivelatore illuminato lateralmente, in cui la luce si propaga trasversalmente. In questo modo, l’efficienza di assorbimento può essere migliorata aumentando la lunghezza del dispositivo anziché il suo spessore. Ancor meglio, lo spessore del rivelatore può essere ridotto ai valori tipici degli SPAD sottili (thin SPADs) con un potenziale jitter temporale di circa 30 ps FWHM. A questo scopo, lo SPAD è incorporato in una guida d’onda in silicio e i fotoni, generati esternamente, sono accoppiati al suo interno tramite una fibra ottica. Grazie ad un elettrodo superiore e ad una regione di contatto presente ad un lato della guida, il tipico profilo di campo elettrico del rivelatore sarà presente lungo lo spessore della struttura e i fotoni saranno in questo modo capaci di generare la valanga. Come primo step, la struttura all’interno del quale lo SPAD verrà fabbricato è stata simulata per predire il comportamento del sistema in risposta a segnali ottici esterni. L’obiettivo di questa analisi ottica è di impostare alcuni parametri della struttura (la lunghezza e la larghezza del rivelatore, lo spessore dell’ossido sepolto, ecc.) e valutare quanto critico è il sistema (alla rugosità della guida, all’accoppiamento tra essa e la fibra ottica, alle proprietà del substrato, ecc.). Dopo l’analisi ottica , uno pseudo processo di fabbricazione è stato creato e simulato per investigare le proprietà elettriche del rivelatore. Fare un dimensionamento perfetto o definitivo del dispositivo va ben oltre lo scopo di questo lavoro. L’obiettivo di questa investigazione è quello di capire come le proprietà elettriche dello SPAD sono influenzate dalla struttura, identificare i possibili problemi e trovare le corrispondenti soluzioni. Per questo motivo, i profili di drogaggio utilizzati in questo lavoro, insieme ai corrispondenti campo elettrico e tensioni di breakdown, devono essere considerati e interpretati come esempi per lo studio delle proprietà del rivelatore, più che come dei valori finali. Per le stesse ragioni, un processo di fabbricazione completo e realistico non è stato ancora simulato. Le simulazioni fatte in questo lavoro di tesi dimostrano quanto promettente possa essere questa soluzione. Infatti, il sistema risulta essere robusto e una percentuale di fotoni assorbiti pari circa a 85 % è ottenibile con efficienze di innesco tra 0.5 e 0.95 per tensioni di overvoltage di unità o decine di Volt. La perdita percentuale all’ingresso della guida, data dai fotoni che non sono in grado di generare una valanga, può essere potenzialmente abbassata fino a valori del 2 %, con una zona morta di soli 200 nm di estensione. L’ultima parte di questo lavoro di tesi è stata dedicata alla modellizzazione del processo di deposizione da POCl3, una tecnica utilizzata all’interno di alcuni processi di fabbricazione di SPAD per ottenere le regioni di catodo.
A preliminary study of the integration of a single photon avalanche diode in a waveguide
BONZI, ANDREA
2018/2019
Abstract
In the recent years the world of Single Photon Counting (SPC) and Time-Correlated Photon Counting (TCPC) has seen the rise of Single Photon Avalanche Diodes (SPAD) as the solid-state alternative to Photo Multiplier Tubes (PMT) thanks to their higher Photon Detection Efficiency (PDE), compactness, reliability and compatibility. Furthermore, silicon custom technologies make possible to obtain large-area detectors, with excellent performances in terms of Dark Count Rate (DCR), afterpulsing probability, time jitter and detection efficiency over the visible and near infrared regions of light. A significant step in the evolution of this type of detector has been the introduction of the Red-Enhanced SPAD (RE-SPAD), a SPAD able to obtain a remarkable PDE up to 1 µm wavelength (e.g. 40 % at a wavelength of 800 nm), while maintaining a good time jitter (i.e. less than 100 ps FWHM). However, with all the SPADs currently available, it is not possible to obtain a combination of high PDE and low timing jitter at long wavelengths (i.e. larger than 800 nm) due to the low absorption. The number of absorbed photons can be increased by acting on the detector thickness, however, at the expense of other performances, such as the timing resolution and the dissipated power. The main focus of my thesis work is to demonstrate that the problem can be overcome with a side-illuminated detector, in which the light propagates transversally. In this case, the absorption efficiency can be improved by increasing the detector length rather than its thickness. Even better, the thickness of the detector can be reduced to the typical values of the thin SPADs with a potential time jitter of about 30 ps FWHM. To this aim, the SPAD is embedded in a silicon waveguide and the photons generated externally are coupled into it through an optical fiber. Thanks to an upper electrode and a contact region present on one side of the guide, the typical electric field profile of the detector will be present along the thickness of the structure and photons will be able to generate an avalanche. As a first step, the structure inside which the SPAD will be embedded has been simulated in order to predict the behaviour of the system in response to external optical signals. The aim of this optical analysis is to set some parameters of the structure (e.g. the length and the width of the detector, the thickness of the buried oxide, etc.) and to evaluate how critical is the system (e.g. to the surface roughness of the guide, to the coupling between it and the optical fiber, to the substrate properties, etc.). After the optical analysis, a pseudo fabrication process was created and simulated in order to investigate the electrical properties of the detector. Making a definitive or perfect sizing of the detector is well beyond the scope of this work. The aim of this investigation is to understand how the electrical properties of the SPAD are affected by the structure, identify the possible problems, and find the corresponding solutions. For this reason, the doping profiles used in this work, along with the corresponding electric field and breakdown voltages, must be regarded as examples to study the detector properties, rather than final values. For the very same reason a complete and realistic fabrication process has not been simulated yet. The simulations that I performed in this thesis work demonstrate how promising the solution can be. In fact, the system results to be robust and a percentage of absorbed photons of about 85 % is obtainable with avalanche breakdown probabilities between 0.5 and 0.95 at applied overvoltages between units and tens of Volts. The percentage loss at the silicon waveguide input, given by the photons that are not able to trigger an avalanche, can be eventually lowered down to about 2 % with a zero triggering efficiency region of 200 nm. The last part of this thesis work was dedicated to the modeling of the POCl3 deposition process, a technique that is used in some SPADs’ fabrication processes to manufacture the cathode regions.File | Dimensione | Formato | |
---|---|---|---|
ANDREA BONZI 898960.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
12.49 MB
Formato
Adobe PDF
|
12.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164441