In the Single Photon Detectors (SPDs) field, silicon Single Photon Avalanche Diodes (SPADs) fabricated in custom and CMOS technology surely represent valid alternatives in most of the applications requiring high performance over the visible spectral-range up to 1 µm wavelength, with different advantages and few drawbacks. While custom SPADs provide best-in-class performance in terms of photon detection efficiency (PDE), dark-count rate (DCR) and timing response, at the expense of cost and limited system integrability, CMOS SPADs offer reliability, reproducibility and high-voltage operation, but do not provide comparable detection efficiency performance. An alternative to enhance the device performance is given by smart power technologies, such as Bipolar-CMOS-DMOS (BCD), which stands as a good compromise between typical SPADs performance and integration with front-end and processing circuits. The aim of this work of thesis is a preliminary investigation of possible structure changes of BCD SPADs fabricated with the BCD8sP process from STMicroelectronics, to enhance the photon detection efficiency. Firstly, the devices have been studied with a new TCAD approach, conceived in this thesis, based on both electrical and optical simulations. PDE in the ultra-violet spectral range has been a major concern, for its importance in many applications such as quantum memories and spectroscopy. With the goal of reducing light reflection at the SPAD active area-air interface, this thesis work moved from simulations towards experiments in cleanroom at Polifab, aimed at removing the back end layers in order to expose the silicon surface for successive deposition of a proper anti-reflection coating layer.
Nel campo dei fotorivelatori a singolo fotone, i Single-Photon Avalanche Diode (SPAD) realizzati in tecnologia custom e CMOS rappresentano sicuramente delle valide scelte nella maggior parte delle applicazioni che richiedono alte prestazioni nella banda spettrale del visibile fino alla lunghezza d’onda di 1 µm, con diversi vantaggi e alcuni svantaggi. Mentre i primi forniscono le migliori prestazioni in termini di efficienza di rivelazione (Photon Detection Efficiency - PDE), conteggi di buio (Dark Count Rate - DCR) e risposta temporale a discapito di costi e limitata integrabilità in sistemi complessi, i secondi offrono affidabilità, riproducibilità e funzionamento ad alte tensioni, perdendo in efficienza di rivelazione. Un’alternativa per migliorare le prestazioni è fornita da tecnologie Bipolar-CMOS-DMOS (BCD), che si pone come un buon compromesso tra le tipiche prestazioni richieste per gli SPAD e il l’integrabilità con circuiti di front-end e di elaborazione. L’obiettivo di questo lavoro di tesi è un’indagine preliminare su possibili modifiche alle strutture di SPAD BCD realizzati secondo il processo BCD8sp di STMicroelectronics, per aumentare l’efficienza. In primo luogo, i dispositivi sono stati studiati con un nuovo approccio TCAD basato su simulazioni elettriche e ottiche. Particolare attenzione è stata posta all’efficienza nella banda dell’ultravioletto, data la sua importanza nelle applicazioni di memorie quantistiche e di spettroscopia. Dato che lo scopo del presente lavoro di tesi è la riduzione della riflessione della luce all’interfaccia aria-dispositivo, lo studio si è spostato dalle simulazioni verso la parte sperimentale condotta presso Polifab, indirizzata alla rimozione degli strati di back-end per preparare il silicio esposto alla successiva deposizione di un adeguato strato antiriflesso.
TCAD simulation and back-end removal for enhancing photon detection efficiency of BCD SPADs
Merendino, Andrea
2019/2020
Abstract
In the Single Photon Detectors (SPDs) field, silicon Single Photon Avalanche Diodes (SPADs) fabricated in custom and CMOS technology surely represent valid alternatives in most of the applications requiring high performance over the visible spectral-range up to 1 µm wavelength, with different advantages and few drawbacks. While custom SPADs provide best-in-class performance in terms of photon detection efficiency (PDE), dark-count rate (DCR) and timing response, at the expense of cost and limited system integrability, CMOS SPADs offer reliability, reproducibility and high-voltage operation, but do not provide comparable detection efficiency performance. An alternative to enhance the device performance is given by smart power technologies, such as Bipolar-CMOS-DMOS (BCD), which stands as a good compromise between typical SPADs performance and integration with front-end and processing circuits. The aim of this work of thesis is a preliminary investigation of possible structure changes of BCD SPADs fabricated with the BCD8sP process from STMicroelectronics, to enhance the photon detection efficiency. Firstly, the devices have been studied with a new TCAD approach, conceived in this thesis, based on both electrical and optical simulations. PDE in the ultra-violet spectral range has been a major concern, for its importance in many applications such as quantum memories and spectroscopy. With the goal of reducing light reflection at the SPAD active area-air interface, this thesis work moved from simulations towards experiments in cleanroom at Polifab, aimed at removing the back end layers in order to expose the silicon surface for successive deposition of a proper anti-reflection coating layer.File | Dimensione | Formato | |
---|---|---|---|
2020_07_Merendino.pdf
non accessibile
Descrizione: Tesi di laurea magistrale
Dimensione
3.07 MB
Formato
Adobe PDF
|
3.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164467