Nowadays, heat and moisture analysis are assuming a relevant importance in the building field: more efficient and performant buildings are more often required in order to reduce the heavy environmental impacts increasing the sustainability and the energy saving. This generate innovative solutions to be tested against the risks of pathologies (early decay of their performances and their physical integrity) in particular those related to the water induced degradation. The building envelope plays a key role as it is the main responsible, on one side, for the interaction between the indoor and outdoor environments and its cost in terms of energy, on the other side, for the heat and moisture exchanges between internal and external environment and the related risks. Therefore, a deep understanding of its behavior is necessary to guarantee the correct selection according to the chosen location. For this reason, and for the high costs and the slowness of laboratory testing, the use of dynamic tools for heat and moisture transfer modelling and analysis is growing in the recent years, as well as their power and reliability. Their main advantage is that they are able to simulate complex stress, boundary conditions, taking into account several additional coupled phenomena, not considered in the common static calculations such as the one proposed in the standard EN ISO 13788. Unfortunately, the use of these tools requires a high level training (in building physics, topics that are not usually taught except few advanced courses, and in numerical analysis), a lot of modelling practice, to tune up models with reality and the results of laboratory tests with the parameters used by the models. The first part of the presented work compares the results of static and dynamic analyses, pointing out the main differences with particular attention on the relation between moisture content and the material properties. For this end, an AAC masonry load-bearing wall is studied considering the phenomena of vapor diffusion. The attention is then focused on the selection of coatings: how can they affect the hygrothermal performance of the building envelope exposed to different external conditions? But, even before: how could we measure these kinds of effects? In this case, water capillary absorption is considered along with vapor diffusion. The results are analyzed with reference to the well-known diagram elaborated by Helmut Künzel, trying to extend its validity to different climates and to check if it constitutes a realistic evaluation of the response of paints. However, the results leave several open questions, for some of which a comparison with experimental data would be necessary and can constitute a starting point of further studies. This work required a long training period, during which, the candidates performed many trials about cases and technical solutions to be analyzed. Only the previous topics was deepened enough to produce what we considered an interesting, original result. Few of the other explored topics are, in any case, presented at the end of this thesis, to propose other case studies that could be deepened in the future, with other research works.
Attualmente l'analisi dei flussi di calore e umidità sta assumendo un'importanza rilevante nel campo dell'edilizia: edifici efficienti e performanti sono più spesso richiesti al fine di ridurre i pesanti impatti ambientali aumentando la sostenibilità e il risparmio energetico. Ciò genera il bisogno di testare soluzioni innovative contro i rischi di patologie con particolare attenzione al degrado causato dall'acqua. L'involucro dell'edificio svolge un ruolo chiave in quanto è il principale responsabile dell'interazione tra gli ambienti interni ed esterni e relativi rischi. Pertanto, è necessaria una profonda comprensione delle sue caratteristiche per garantirne un’adeguata durabilità in base alla località geografica scelta. Pertanto, a causa degli alti costi e dei tempi richiesti dai test di laboratorio, negli ultimi anni è cresciuto l'utilizzo di strumenti dinamici per la modellazione e l'analisi dei fenomeni di scambio di calore e umidità, così come la loro potenza e affidabilità. Il loro principale vantaggio è che sono in grado di simulare complesse condizioni al contorno, tenendo conto di diversi fenomeni aggiuntivi, non considerati nei calcoli statici comuni come quello proposto nella norma EN ISO 13788. Sfortunatamente, l'uso di questi strumenti richiede una formazione di alto livello (argomenti di fisica dell’edificio che di solito non vengono insegnati tranne che in pochi corsi avanzati e nell'analisi numerica), molta pratica di modellazione, per mettere a punto modelli che rispecchiano la realtà e i risultati ottenuti con test di laboratorio. La prima parte del lavoro presentato confronta i risultati delle analisi statiche e dinamiche, evidenziando le principali differenze con particolare attenzione alla relazione tra contenuto d’acqua e proprietà del materiale. A tal fine, viene studiata una parete portante in calcestruzzo aerato autoclavato considerando i fenomeni di diffusione del vapore. L'attenzione è quindi focalizzata sulla selezione dei rivestimenti: in che modo possono influenzare le prestazioni igrotermiche dell'involucro dell'edificio esposto a diverse condizioni esterne? I risultati vengono analizzati con riferimento al noto diagramma elaborato da Helmut Künzel, cercando di estenderne la validità a diversi climi e di verificare se costituisce una valutazione realistica delle prestazioni delle pitture. Tuttavia, i risultati lasciano diverse domande aperte, per alcune delle quali sarebbe necessario un confronto con i dati sperimentali e che può costituire un punto di partenza per ulteriori studi. Questo lavoro ha richiesto un lungo periodo di formazione, durante il quale i candidati hanno eseguito molte prove su casi e soluzioni tecniche da analizzare. Solo gli argomenti precedenti sono stati sufficientemente approfonditi per produrre quello che abbiamo considerato un risultato interessante e originale. Alcuni degli altri argomenti esplorati sono, comunque, presentati alla fine di questa tesi, per proporre altri casi studio che potrebbero essere approfonditi in futuro, con altri lavori di ricerca.
Heat and moisture-based modelling of the hygrothermal performance of the building envelope
PEREN, JOY ALEXIS;AUGELLO, ANDREA
2019/2020
Abstract
Nowadays, heat and moisture analysis are assuming a relevant importance in the building field: more efficient and performant buildings are more often required in order to reduce the heavy environmental impacts increasing the sustainability and the energy saving. This generate innovative solutions to be tested against the risks of pathologies (early decay of their performances and their physical integrity) in particular those related to the water induced degradation. The building envelope plays a key role as it is the main responsible, on one side, for the interaction between the indoor and outdoor environments and its cost in terms of energy, on the other side, for the heat and moisture exchanges between internal and external environment and the related risks. Therefore, a deep understanding of its behavior is necessary to guarantee the correct selection according to the chosen location. For this reason, and for the high costs and the slowness of laboratory testing, the use of dynamic tools for heat and moisture transfer modelling and analysis is growing in the recent years, as well as their power and reliability. Their main advantage is that they are able to simulate complex stress, boundary conditions, taking into account several additional coupled phenomena, not considered in the common static calculations such as the one proposed in the standard EN ISO 13788. Unfortunately, the use of these tools requires a high level training (in building physics, topics that are not usually taught except few advanced courses, and in numerical analysis), a lot of modelling practice, to tune up models with reality and the results of laboratory tests with the parameters used by the models. The first part of the presented work compares the results of static and dynamic analyses, pointing out the main differences with particular attention on the relation between moisture content and the material properties. For this end, an AAC masonry load-bearing wall is studied considering the phenomena of vapor diffusion. The attention is then focused on the selection of coatings: how can they affect the hygrothermal performance of the building envelope exposed to different external conditions? But, even before: how could we measure these kinds of effects? In this case, water capillary absorption is considered along with vapor diffusion. The results are analyzed with reference to the well-known diagram elaborated by Helmut Künzel, trying to extend its validity to different climates and to check if it constitutes a realistic evaluation of the response of paints. However, the results leave several open questions, for some of which a comparison with experimental data would be necessary and can constitute a starting point of further studies. This work required a long training period, during which, the candidates performed many trials about cases and technical solutions to be analyzed. Only the previous topics was deepened enough to produce what we considered an interesting, original result. Few of the other explored topics are, in any case, presented at the end of this thesis, to propose other case studies that could be deepened in the future, with other research works.| File | Dimensione | Formato | |
|---|---|---|---|
|
2020_04_Augello_Peren.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
8.06 MB
Formato
Adobe PDF
|
8.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164507