Multiphase flows are extensively used for power generation (e.g. internal combustion engines, gas turbines, industrial burners), due to the high energy density of liquid fuels. The combustion of a liquid is generally carried out through an atomization process, transforming the liquid in a spray of droplets, followed by the fuel vaporization, ignition and gas-phase combustion. The improvement and control of a spray system is not only beneficial from an economical point of view, but it significantly impacts its efficiency in terms of pollutants emission. The collective vaporization of the droplets ensemble directly influences the burning rate and the combustion chamber performance. The simplest and physically meaningful configuration we can extract from a spray system is represented by an isolated droplet: this allows to put aside the physical interaction phenomena typically involved in gas-liquid dispersed flows (breakups, coalescence, fragmentation etc.), obtaining an ideal system for the analysis of vaporization, ignition and combustion of liquid fuels. Isolated droplets are mainly studied assuming a spherical symmetry of the system in order to simplify the mathematical modeling and leave room for a more detailed chemistry description: this approach paved the way for the study of crucial aspects related to microgravity combustion, such as cool flames, multiple ignitions and extinction regimes. The main drawback is that external convection, internal circulation, interface deformations and other essential phenomena cannot be described, despite their fundamental role in droplet vaporization. This work aims at addressing these issues, proposing and discussing a numerical model for the combustion of isolated droplets based on an interface-resolved approach, i.e. including momentum equations for the velocity field and the advection of the fluid interface, abandoning the sphero-symmetric hypothesis. The main novelty is the extension of the two-phase fluid dynamic core to include (i) heat and mass transfer rates based on the resolution of the boundary layer (without the use of semi-empirical correlations), (ii) a detailed treatment of thermodynamics at the interface, (iii) multicomponent fuels, (iv) the phase-change process, (v) the gas-phase combustion and (vi) the thermal interaction with the suspending fiber. In addition, one of the main critical problems in the CFD modeling of evaporating droplets is the numerical treatment of surface tension, due to the persistent presence of an artificial velocity field (spurious currents) which destabilizes the interface. In this work this problem has been approached introducing (vii) a suspending force, directed towards the droplet center, which stabilizes the droplet against gravity and eliminates the spurious currents instabilities. The resulting code is called DropletSMOKE++ and it shows a very good agreement with the experiments in a wide range of operating conditions, both in natural and forced convection. The comparison with the microgravity condition highlights the impact of the external fluid flow on the evaporation mechanism, while non-ideal thermodynamics is shown to be fundamental to model high pressure systems and multicomponent droplets. The analysis of droplet combustion is reported in terms of standoff ratio, flame temperature, internal circulation and water condensation, exhibiting a satisfactory agreement with experiments in terms of diameter decay, temperature profiles and sensitivity to the gas-phase oxygen concentration. In particular, the multiregion approach is shown to be essential to describe the conjugate heat transfer between the solid fiber and the fluid phase, which enhances the burning rate and causes a partial quenching of the flame close to the wall. Finally, the problem of spurious currents has been approached in a more rigorous way: DropletSMOKE++ is extended to include a stable and accurate methodology for surface tension, based on a combination of the Ghost Fluid Method (GFM) and Height Functions (HF). The method is able to reduce spurious currents almost to machine accuracy and accurate results are obtained for additional cases such as translating droplets, capillary oscillations, rising bubbles, sessile droplets and suspended droplets.
I flussi multifase sono largamente utilizzati per la generazione di energia (motori a combustione interna, turbine a gas, bruciatori industriali), grazie alla loro elevata densità energetica. La combustione di un liquido è generalmente iniziata da un processo di atomizzazione, trasformando il liquido in uno spray, seguita dalla vaporizzazione del combustibile, l' ignizione e la combustione in fase gas. Il miglioramento e il controllo di un sistema spray non è solo vantaggioso dal punto di vista economico, ma impatta in modo significativo l'efficienza in termini di emissioni inquinanti. A causa dell'intrinseca complessità degli spray, le simulazioni numeriche giocano un ruolo fondamentale nello studio e ottimizzazione di questi sistemi, rivelando meccanismi e dettagli fisici spesso non visualizzabili sperimentalmente. L'evaporazione collettiva di un insieme di goccioline influenza direttamente la velocità di conversione dell'energia e, in ultima analisi, le prestazioni della camera di combustione. La più semplice, ma fisicamente significativa configurazione estraibile da un sistema spray è rappresentata da una goccia isolata: questo permette di mettere da parte i fenomeni di interazione fisica tipici dei flussi bifase dispersi (breakup, coalescenze, frammentazioni etc.), ottenendo un sistema ideale per l'analisi dell'evaporazione, ignizione e combustione di combustibili liquidi. Le gocce isolate sono principalmente studiate assumendo una simmetria sferica del sistema, per semplificare la modellazione matematica, lasciando spazio ad un maggior dettaglio dal punto di vista chimico: questo approccio ha permesso di studiare in dettaglio fenomeni fondamentali della combustione in microgravità, come fiamme fredde, ignizioni multiple e regimi di estinzione. L'inconveniente principale è che la convezione, la circolazione interna, le deformazioni dell'interfaccia e altri importanti fenomeni non possono essere descritti, nonostante il loro ruolo fondamentale nell'evaporazione di gocce. Questo lavoro di tesi mira ad affrontare questi problemi, con lo sviluppo di un modello di combustione di una gocciolina isolata basato su un approccio interface-resolved, cioè includendo nel modello la soluzione dei campi di velocità e il trasporto dell'interfaccia, abbandonando l'ipotesi di simmetria sferica. La principale novità del lavoro è l'estensione di questo modello fluidodinamico bifase per includere (i) i fenomeni di scambio termico e materiale basati sulla soluzione dello strato limite (senza quindi l'utilizzo di correlazioni), (ii) una descrizione dettagliata della termodinamica all'interfaccia, (iii) combustibili multicomponente, (iv) il passaggio di fase, (v) la combustione in fase gas e (vi) l'interazione termica con la fibra. Il codice risultante è chiamato DropletSMOKE++, concepito per la modellazione dell'evaporazione e combustione di gocce di combustibile in regime di convezione esterna. DropletSMOKE++ presenta un ottimo accordo con i dati sperimentali in un ampio spettro di condizioni operative, sia in convezione naturale che forzata. Il confronto con i dati in microgravità evidenzia l'impatto della convezione esterna sul meccanismo di evaporazione, mentre la non-idealità della termodinamica si è rivelata fondamentale per modellare sistemi ad alta pressione o gocce multicomponente. L'analisi della combustione è riportata in termini di diametro di fiamma, temperatura massima, circolazione interna e condensazione di acqua. L'accordo con i dati sperimentali è soddisfacente per quanto riguarda i profili temporali del diametro, della temperatura e della sensitività all'ossigeno in fase gas. In particolare, l'approccio multiregione è essenziale per descrivere lo scambio termico tra la fibra e il fluido bifase, il quale incrementa la velocità di combustione e causa il parziale spegnimento della fiamma vicino alla superficie solida. Uno degli aspetti più critici nella modellazione CFD di gocce è la tensione superficiale, a causa della presenza di velocità artificiali (spurious currents) che destabilizzano l'interfaccia. DropletSMOKE++ è esteso per includere una metodologia accurata per la tensione superficiale, ovvero una combinazione di Ghost Fluid Method (GFM) e Height Functions (HF). Il metodo è in grado di ridurre significativamente queste correnti, permettendo simulazioni numeriche stabili. Risultati accurati sono stati ottenuti per altri casi test, come gocce in movimento uniforme, oscillazioni capillari, bolle immerse in un liquido e gocce sospese.
An interface-resolved methodology for the evaporation and combustion modeling of isolated fuel droplets
SAUFI, ABD ESSAMADE
2019/2020
Abstract
Multiphase flows are extensively used for power generation (e.g. internal combustion engines, gas turbines, industrial burners), due to the high energy density of liquid fuels. The combustion of a liquid is generally carried out through an atomization process, transforming the liquid in a spray of droplets, followed by the fuel vaporization, ignition and gas-phase combustion. The improvement and control of a spray system is not only beneficial from an economical point of view, but it significantly impacts its efficiency in terms of pollutants emission. The collective vaporization of the droplets ensemble directly influences the burning rate and the combustion chamber performance. The simplest and physically meaningful configuration we can extract from a spray system is represented by an isolated droplet: this allows to put aside the physical interaction phenomena typically involved in gas-liquid dispersed flows (breakups, coalescence, fragmentation etc.), obtaining an ideal system for the analysis of vaporization, ignition and combustion of liquid fuels. Isolated droplets are mainly studied assuming a spherical symmetry of the system in order to simplify the mathematical modeling and leave room for a more detailed chemistry description: this approach paved the way for the study of crucial aspects related to microgravity combustion, such as cool flames, multiple ignitions and extinction regimes. The main drawback is that external convection, internal circulation, interface deformations and other essential phenomena cannot be described, despite their fundamental role in droplet vaporization. This work aims at addressing these issues, proposing and discussing a numerical model for the combustion of isolated droplets based on an interface-resolved approach, i.e. including momentum equations for the velocity field and the advection of the fluid interface, abandoning the sphero-symmetric hypothesis. The main novelty is the extension of the two-phase fluid dynamic core to include (i) heat and mass transfer rates based on the resolution of the boundary layer (without the use of semi-empirical correlations), (ii) a detailed treatment of thermodynamics at the interface, (iii) multicomponent fuels, (iv) the phase-change process, (v) the gas-phase combustion and (vi) the thermal interaction with the suspending fiber. In addition, one of the main critical problems in the CFD modeling of evaporating droplets is the numerical treatment of surface tension, due to the persistent presence of an artificial velocity field (spurious currents) which destabilizes the interface. In this work this problem has been approached introducing (vii) a suspending force, directed towards the droplet center, which stabilizes the droplet against gravity and eliminates the spurious currents instabilities. The resulting code is called DropletSMOKE++ and it shows a very good agreement with the experiments in a wide range of operating conditions, both in natural and forced convection. The comparison with the microgravity condition highlights the impact of the external fluid flow on the evaporation mechanism, while non-ideal thermodynamics is shown to be fundamental to model high pressure systems and multicomponent droplets. The analysis of droplet combustion is reported in terms of standoff ratio, flame temperature, internal circulation and water condensation, exhibiting a satisfactory agreement with experiments in terms of diameter decay, temperature profiles and sensitivity to the gas-phase oxygen concentration. In particular, the multiregion approach is shown to be essential to describe the conjugate heat transfer between the solid fiber and the fluid phase, which enhances the burning rate and causes a partial quenching of the flame close to the wall. Finally, the problem of spurious currents has been approached in a more rigorous way: DropletSMOKE++ is extended to include a stable and accurate methodology for surface tension, based on a combination of the Ghost Fluid Method (GFM) and Height Functions (HF). The method is able to reduce spurious currents almost to machine accuracy and accurate results are obtained for additional cases such as translating droplets, capillary oscillations, rising bubbles, sessile droplets and suspended droplets.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
Open Access dal 08/07/2021
Descrizione: Tesi_SAUFI
Dimensione
11.93 MB
Formato
Adobe PDF
|
11.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164516