Natural polymers are a valid alternative to synthetic polymers since they are biocompatible and a few are biodegradable, moreover they can be obtained from low-cost renewable natural sources, they allow to imitate physiological situations and they have a great affinity with water that is present in large quantities in the tissues together with macromolecules, such as proteins and carbohydrates. Among the natural polymers there are intelligent polymers that are able to perceive a specific environmental stimulus that modifies a particular characteristic and to return to their original state when the stimulus is removed. The most used stimuli in biomedical applications are the stimuli of temperature and pH. The natural polymers studied in this thesis work are methylcellulose (MC) and chitosan (CS). The aim of this work is the realization of a matrix of CS and MC by the electrophoretic deposition technique (EPD). Through EPD it is possible to create one-pot matrices with controlled porosity and variable composition according to the electrolytic solution used. The ultimate goal is to create dual-responsive matrices, that is, which respond to pH stimulus deriving from the pH-responsive property of chitosan and to thermal stimulus, deriving from the thermo-responsive property of methylcellulose. The EPD has made it possible to create self-standing matrices of CS-MC and CS. In addition, only MC control samples were made. The samples (CS-MC, CS, MC) were characterized from a chemical point of view by infrared spectroscopy (FTIR). Furthermore, the samples were characterized by swelling. The samples were freeze-dried and each sample was immersed in solutions at pH 4, 7, 10 and temperatures of 4 °C, 37 °C, 60 °C. Immersed in the respective solutions, all the samples were weighed at different time points. From the swelling tests it was possible to qualitatively evaluate the percentage of polymer present in the CS-MC samples. The chemical-physical characterizations confirm the presence of the CS and the MC within the CS-MC samples. The inversion tests were performed to qualitatively evaluate the gelation temperature of the CS-MC blend and that of the MC solution with the addition of the NaCl salt. These tests confirmed that the addition of the NaCl salt lowered the LCST of the MC. Subsequently, the NaCl salt was inserted into the CS-MC solution by two procedures and it was shown that the choice of a procedure is arbitrary. The pH and conductivity parameters were measured during the preparation of the CS-MC solution with the NaCl salt and it was verified that the pH does not undergo changes after the addition of the NaCl salt, instead the conductivity increases considerably. Two electrophoretic deposition tests were carried out with the CS-MC solution with the NaCl salt prepared by the two previous procedures. In this thesis work it was possible to demonstrate that the production of CS-MC matrices by EPD is successful, moreover, the addition of the NaCl salt lowers the LCST of the MC and consequently of the CS-MC blend for its application in biomedical field as a dual-responsive matrix.
I polimeri naturali costituiscono una valida alternativa ai polimeri di sintesi poiché sono biocompatibili e molti biodegradabili, inoltre possono essere ricavati da fonti naturali rinnovabili a basso costo, consentono di imitare situazioni fisiologiche e hanno una grande affinità con l’acqua che è presente in grande quantità nei tessuti insieme alle macromolecole, come proteine e carboidrati. Tra i polimeri naturali sono presenti polimeri smart che sono in grado di percepire uno specifico stimolo ambientale che ne modifica una particolare caratteristica e di ritornare al loro stato originale quando lo stimolo viene rimosso. Gli stimoli più utilizzati nell’ambito delle applicazioni biomedicali sono lo stimolo della temperatura e del pH. I polimeri naturali studiati in questo lavoro di tesi sono la metilcellulosa (MC) e il chitosano (CS). Lo scopo di questo lavoro è la realizzazione di blend di CS e MC mediante la tecnica di deposizione elettroforetica (EPD). Tramite EPD è possibile realizzare one-pot matrici a porosità controllata e composizione variabile a seconda della soluzione elettrolitica utilizzata. L’obiettivo ultimo è quello di realizzare matrici dual-responsive, ovvero che rispondono a stimoli di pH derivanti dalla proprietà pH-responsive del chitosano e a stimoli termici, derivanti dalla proprietà thermo-responsive della metilcellulosa. L’EPD ha permesso di realizzare matrici self standing di CS-MC e di CS. Inoltre, sono stati realizzati campioni di controllo di sola MC. I campioni (CS-MC, CS, MC) sono stati caratterizzati dal punto di vista chimico mediante spettroscopia infrarossa (FTIR). Inoltre, i campioni sono stati caratterizzati mediante i test di swelling. I campioni sono stati liofilizzati e ogni campione è stato immerso in soluzioni a pH 4, 7, 10 e temperature di 4 °C, 37 °C, 60 °C. Immersi nelle rispettive soluzioni, tutti i campioni sono stati pesati a differenti time points. Dai test di swelling è stato possibile valutare qualitativamente la percentuale di polimero presente nei campioni CS-MC. Le caratterizzazioni chimico-fisiche confermano la presenza del CS e della MC all’interno dei campioni CS-MC. Sono stati eseguiti i test di inversione per valutare qualitativamente la temperatura di gelificazione del blend CS-MC e della soluzione di MC con l’aggiunta del sale NaCl. Tali test hanno confermato che l’inserimento del sale NaCl abbia abbassato la LCST della MC. Successivamente, il sale NaCl è stato inserito nella soluzione CS-MC mediante due procedure ed è stato dimostrato che la scelta di una procedura è arbitraria. Sono stati misurati i parametri di pH e conducibilità durante la preparazione della soluzione CS-MC con il sale NaCl ed è stato verificato che il pH non subisce variazioni dopo l’aggiunta del sale NaCl, invece la conducibilità aumenta notevolmente. Sono state eseguite due prove di deposizione elettroforetica con la soluzione CS-MC con il sale NaCl preparata mediante le due procedure precedenti. In questo lavoro di tesi è stato possibile dimostrare che la produzione di matrici di CS-MC mediante EPD avviene correttamente, inoltre, l’aggiunta del sale NaCl abbassa la LCST della MC e di conseguenza del blend CS-MC per una sua applicazione in campo biomedicale come matrice dual-responsive.
Ottimizzazione del processo di deposizione elettroforetica di blend di polimeri naturali
DITTA, ANNA
2019/2020
Abstract
Natural polymers are a valid alternative to synthetic polymers since they are biocompatible and a few are biodegradable, moreover they can be obtained from low-cost renewable natural sources, they allow to imitate physiological situations and they have a great affinity with water that is present in large quantities in the tissues together with macromolecules, such as proteins and carbohydrates. Among the natural polymers there are intelligent polymers that are able to perceive a specific environmental stimulus that modifies a particular characteristic and to return to their original state when the stimulus is removed. The most used stimuli in biomedical applications are the stimuli of temperature and pH. The natural polymers studied in this thesis work are methylcellulose (MC) and chitosan (CS). The aim of this work is the realization of a matrix of CS and MC by the electrophoretic deposition technique (EPD). Through EPD it is possible to create one-pot matrices with controlled porosity and variable composition according to the electrolytic solution used. The ultimate goal is to create dual-responsive matrices, that is, which respond to pH stimulus deriving from the pH-responsive property of chitosan and to thermal stimulus, deriving from the thermo-responsive property of methylcellulose. The EPD has made it possible to create self-standing matrices of CS-MC and CS. In addition, only MC control samples were made. The samples (CS-MC, CS, MC) were characterized from a chemical point of view by infrared spectroscopy (FTIR). Furthermore, the samples were characterized by swelling. The samples were freeze-dried and each sample was immersed in solutions at pH 4, 7, 10 and temperatures of 4 °C, 37 °C, 60 °C. Immersed in the respective solutions, all the samples were weighed at different time points. From the swelling tests it was possible to qualitatively evaluate the percentage of polymer present in the CS-MC samples. The chemical-physical characterizations confirm the presence of the CS and the MC within the CS-MC samples. The inversion tests were performed to qualitatively evaluate the gelation temperature of the CS-MC blend and that of the MC solution with the addition of the NaCl salt. These tests confirmed that the addition of the NaCl salt lowered the LCST of the MC. Subsequently, the NaCl salt was inserted into the CS-MC solution by two procedures and it was shown that the choice of a procedure is arbitrary. The pH and conductivity parameters were measured during the preparation of the CS-MC solution with the NaCl salt and it was verified that the pH does not undergo changes after the addition of the NaCl salt, instead the conductivity increases considerably. Two electrophoretic deposition tests were carried out with the CS-MC solution with the NaCl salt prepared by the two previous procedures. In this thesis work it was possible to demonstrate that the production of CS-MC matrices by EPD is successful, moreover, the addition of the NaCl salt lowers the LCST of the MC and consequently of the CS-MC blend for its application in biomedical field as a dual-responsive matrix.File | Dimensione | Formato | |
---|---|---|---|
2020_06_Ditta.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.45 MB
Formato
Adobe PDF
|
2.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164561