Solid rocket motors (SRMs) feature interesting characteristics in terms of high volumetric specific impulse and low cost, but their main drawback is the two-phase flow losses yielding a performance detriment of metallized formulations. Contrary, hybrid rocket engines (HREs) are characterized by high operating flexibility and reduction in the environmental impact but are not employed in operating systems due to the intrinsic slow regression rate. For both SRMs and HREs these limitations can be overcome by the use of innovative metal additives. In this work, Al- and B-based additives are considered. For the former metal the attention is focused on nano-sized aluminum (nAl). Thanks to the reduced size, nAl shows large specific surface area (SSA) and high reactivity (i.e. lower ignition temperature and burning time than conventional micron-sized Al). Yet nAl exploitation requires techniques to mitigate its particle cold-cohesion phenomena and the difficult manufacturing process. In this work, inert and oxidizing coatings are proposed as strategies to mitigate the nAl-related handling and manufacturing issues. Hydroxyl-terminated polybutadiene (HTPB) and ammonium perchlorate (AP) are considered as coating materials. In this work, a relative grading between innovative aluminum and boron powders for SRMs and HREs applications is performed. The powders are characterized investigating their morphology, composition and size as well as reactivity at slow heating rate. Then, the theoretical performance though a thermochemical approach and the ballistic response are investigated for both solid propellant and fuels, keeping unchanged the metal molar content. AP-based solid propellants and paraffin-based fuels tested in gaseous O2 (GOX) are considered. The ballistic analysis of the tested solid propellant show the high burning rate of the nAl-based formulations. The HTPB-coating provides results similar to the one obtained for nAl-loaded propellant, while surface visualizations show the presence of flake-shaped condensed combustion products. Aggregation and agglomeration influence the AlB2-based propellant too. In terms of burning rate this formulation shows a percent decrease with respect to the nAl-loaded propellant of circa 20 % at 40 bar. For solid fuels, regression rate was analyzed with classical thickness over time technique and experimental results show the relationship between metal powder addition and regression rate.
I razzi a propellente solido presentano caratteristiche interessanti per l'alto impulso specifico volumetrico e basso costo, ma il loro più grande svantaggio consiste nelle perdite di flusso bifase, che determinano un peggioramento delle performance per le formulazioni metallizzate. Diversamente, i motori a propulsione ibrida sono caratterizzati da alta flessibilità e ridotto impatto ambientale, ma non vengono utilizzati nei sistemi operativi per la bassa velocità di regressione. Per entrambi i sistemi di propulsione queste limitazioni possono essere superate con l'utilizzo di additivi metallici innovativi. In questo lavoro, vengono considerati additivi a base di alluminio e boro. Per il primo di questi, l'attenzione viene focalizzata sull'alluminio nanometrico (nAl). Grazie alle sue ridotte dimensioni, il nAl ha un'elevata superficie specifica (SSA) e alta reattività (ovvero minor temperatura di ignizione e tempo di combustione rispetto al convenzionale Al micrometrico). L'utilizzo del nAl richiede particolari tecniche che possano mitigare il fenomeno di coesione a freddo e il difficoltoso processo di manifattura. In questo lavoro sono stati proposti coating inerti e con ossidanti come soluzioni per mitigare i problemi nell'utilizzo di alluminio nanometrico, legati soprattutto alla sua gestione e durante la manifattura. Come materiali per il coating sono stati considerati il polibutadine a terminazione idrossilica (HTPB) e il perclorato di ammonio (AP). In questa tesi si è confrontato l'effetto di polveri innovative a base di alluminio e boro per motori a propulsione solida e ibrida. Le polveri sono state caratterizzate in base alla loro morfologia, composizione e dimensioni, così come in base alla reattività a basso rateo di riscaldamento. Successivamente sono state investigate le performance teoriche e le risposte balistiche per i propellenti e i combustibili, mantenendo inalterato il contenuto molare di metallo. Sono stati considerati propellenti solidi a base di perclorato di ammonio e combustibili a base di paraffina testati con ossigeno gassoso (GOX). L'analisi balistica ha evidenziato alte velocità di regressione per le formulazioni a base di nAl. Il coating di HTPB ha fornito risultati simili a quelli ottenuti col propellente caricato con nAl, invece le visualizzazioni della superficie di combustione hanno messo in luce la presenza di condensati a forma di fiocco. I fenomeni di aggregazione e agglomerazione influenzano anche i propellenti a base di AlB2. Questa formulazione dimostra riduzioni nella velocità di combustione pari al 20 % a 40 bar. Per quanto riguarda i combustibili solidi, il rateo di regressione è stato analizzato tramite la classica tecnica spessore su tempo (thickness over time, TOT) e i risultati sperimentali hanno dimostrato una correlazione tra l'aggiunta di polveri metalliche e la velocità di regressione.
Innovative aluminum & boron powders for space propulsion applications : characterization and combustion in solid propellants and fuels
TORRETTA, ARTEMIO
2018/2019
Abstract
Solid rocket motors (SRMs) feature interesting characteristics in terms of high volumetric specific impulse and low cost, but their main drawback is the two-phase flow losses yielding a performance detriment of metallized formulations. Contrary, hybrid rocket engines (HREs) are characterized by high operating flexibility and reduction in the environmental impact but are not employed in operating systems due to the intrinsic slow regression rate. For both SRMs and HREs these limitations can be overcome by the use of innovative metal additives. In this work, Al- and B-based additives are considered. For the former metal the attention is focused on nano-sized aluminum (nAl). Thanks to the reduced size, nAl shows large specific surface area (SSA) and high reactivity (i.e. lower ignition temperature and burning time than conventional micron-sized Al). Yet nAl exploitation requires techniques to mitigate its particle cold-cohesion phenomena and the difficult manufacturing process. In this work, inert and oxidizing coatings are proposed as strategies to mitigate the nAl-related handling and manufacturing issues. Hydroxyl-terminated polybutadiene (HTPB) and ammonium perchlorate (AP) are considered as coating materials. In this work, a relative grading between innovative aluminum and boron powders for SRMs and HREs applications is performed. The powders are characterized investigating their morphology, composition and size as well as reactivity at slow heating rate. Then, the theoretical performance though a thermochemical approach and the ballistic response are investigated for both solid propellant and fuels, keeping unchanged the metal molar content. AP-based solid propellants and paraffin-based fuels tested in gaseous O2 (GOX) are considered. The ballistic analysis of the tested solid propellant show the high burning rate of the nAl-based formulations. The HTPB-coating provides results similar to the one obtained for nAl-loaded propellant, while surface visualizations show the presence of flake-shaped condensed combustion products. Aggregation and agglomeration influence the AlB2-based propellant too. In terms of burning rate this formulation shows a percent decrease with respect to the nAl-loaded propellant of circa 20 % at 40 bar. For solid fuels, regression rate was analyzed with classical thickness over time technique and experimental results show the relationship between metal powder addition and regression rate.File | Dimensione | Formato | |
---|---|---|---|
2020_06_Torretta.pdf
solo utenti autorizzati dal 22/05/2023
Descrizione: Testo della tesi
Dimensione
60.49 MB
Formato
Adobe PDF
|
60.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164657