Due to the changes that have been resulted from either natural drivers or human activities, the Earth’s climate is constantly changing. Climate change, which is a long-term alteration in the average weather patterns, has exerted a wide range of concerning consequences that encompass global warming, rising sea level, and many severity changes in precipitation, hurricanes, droughts, etc. The effect of global warming resulting from changes in climate conditions around the world is widely recognized, and the evidence needs no argument to point to climate change’s direct effect on the building. Consequently, work on these substantial effects of climate change on both building performance and human comfort is crucial for the construction industry. However, planning for climate change adaptation is complicated since it is difficult to predict the expected degree of warming as well as the expected pace. Clearly, it will be required to alter the way we design, construct, upgrade, and occupy buildings with respected changes, which are the challenges of adapting. Given the importance of all the mentioned reasons, this research proposes a framework to identify adaption solutions from both technical and economic points of view ,using the Merlata Residential Complex located in Milan. These solutions can help to make the case study more resilient that may tackle the future climate change in the metropolitan city of Milan. The first part of this research follows five stages. Stage 1 is forecasting three future weather data by using CCWorldWeatherGen Excel-based tool for the years of 2020, 2050, and 2080, along with analyzing the pre-retrofit case study by using Energyplus software under current weather scenarios (IGDG and JRY). The Second stage follows the simulation of the case study in three future weather scenarios. These two described stages help to clarify the building energy performance in face of climate change. Propounding different envelope technologies and simulations of the upgraded case study with the five mentioned scenarios are respectively among the discussed cases of stage 3. Analysis of the results obtained from the previous stages is mentioned in stage 4 for comparing the benefits of each solution. Finally, the last stage indicates better retrofit strategies in terms of building energy performance for future scenarios. The second part of this research deals with the importance of primary energy reduction in the building sector, which has been targeted by the European Commission. Cost-optimal analysis has been done by using the NPV method for the mentioned energy retrofit technologies to comprehend the way in which these strategies affect the total energy costs and energy. This part includes four stages, which are respectively referred to identification of reference building and energy efficiency measures resulted from the first part and concluding their effects on global cost and primary energy variation by proffering approximate values for future primary energy factors. Consequently, these procedures demonstrate how this type of analysis helps to evaluate existing building performance and considered as part of a long-term retrofit strategy for the case study facility.
Il clima della Terra è in continua evoluzione a causa di eventi naturali e degli interventi dell’uomo sull’ambiente. Il cambiamento climatico, che è un'alterazione a lungo termine delle condizioni meteorologiche medie, ha esercitato una vasta gamma di conseguenze che comprendono il riscaldamento globale, l'innalzamento del livello del mare e considerevoli cambiamenti di frequenza delle precipitazioni, degli uragani, della siccità, ecc. Il riscaldamento globale, è ampiamente riconosciuto ed esercita un effetto diretto sugli usi energetici degli edifici. Di conseguenza, un’analisi dettagliata degli effetti che i cambiamenti climatici hanno sulle prestazioni degli edifici e sul comfort degli occupanti è cruciale per l'industria delle costruzioni e per il contenimento dell’uso di energia nel settore edile. Tuttavia, la pianificazione dell'adattamento ai cambiamenti climatici è complicata poiché prevedere l'intensità e la rapidità del riscaldamento non è semplice. Chiaramente, dovremo cambiare il modo in cui progettiamo, costruiamo, riqualifichiamo e occupiamo gli edifici per far fronte ai futuri cambiamenti climatici, progettando degli edifici non solo efficienti, ma anche resilienti. Per questo motivo, lo scopo di questo elaborato è definire una metodologia volta ad identificare soluzioni per l’involucro edilizio, efficaci sia da un punto di vista tecnico che economico, che permettano l’adattamento energetico degli edifici in vista dei i futuri cambiamenti climatici nella città metropolitana di Milano. La prima parte di questo elaborato e diviso in cinque fasi. La fase 1 prevede la creazione tre set di dati meteorologici futuri utilizzando lo strumento basato su Excel CCWorldWeatherGen per gli anni 2020, 2050 e 2080, in essa si analizza inoltre il caso studio oggetto della tesi, attraverso software Energyplus negli attuali scenari meteorologici (IGDG e JRY). La seconda fase segue la simulazione del caso studio in tre scenari meteorologici futuri. Queste due fasi descritte aiutano a chiarire le prestazioni energetiche la fase 3 propone poi di fronte ai cambiamenti climatici. La fase 3 propone poi diverse tecnologie di sviluppo e simulazioni del caso studio aggiornato con i cinque scenari citati. L'analisi dei risultati ottenuti dalle fasi precedenti è spiegata nella fase 4 per confrontare i benefici di ciascuna soluzione. Infine, l'ultima fase indica le migliori strategie di retrofit in termini di costruzione di prestazioni energetiche per scenari futuri. La seconda parte dell’elaborato tratta dell'importanza della riduzione dell'energia primaria nel settore dell'edilizia. L'analisi cost-optimal è stata effettuata utilizzando il valore attuale netto (VAN) per le citate tecnologie di retrofit energetica per comprendere il modo in cui queste strategie influenzano i costi energetici totali. Questa parte comprende quattro fasi, che si riferiscono rispettivamente all'identificazione dell'edificio di riferimento e alle misure di efficienza energetica risultanti dalla prima parte e alla conclusione dei loro effetti sul costo globale e sulla variazione dell'energia primaria offrendo valori approssimativi per i futuri fattori di energia primaria. Di conseguenza, queste procedure dimostrano come questo tipo di analisi aiuta a valutare le prestazioni degli edifici esistenti considerate come parte di una strategia di retrofit a lungo termine per la struttura del caso studio.
Impacts of future climates on building energy performance
SEYED VAKILI, BAHAR
2019/2020
Abstract
Due to the changes that have been resulted from either natural drivers or human activities, the Earth’s climate is constantly changing. Climate change, which is a long-term alteration in the average weather patterns, has exerted a wide range of concerning consequences that encompass global warming, rising sea level, and many severity changes in precipitation, hurricanes, droughts, etc. The effect of global warming resulting from changes in climate conditions around the world is widely recognized, and the evidence needs no argument to point to climate change’s direct effect on the building. Consequently, work on these substantial effects of climate change on both building performance and human comfort is crucial for the construction industry. However, planning for climate change adaptation is complicated since it is difficult to predict the expected degree of warming as well as the expected pace. Clearly, it will be required to alter the way we design, construct, upgrade, and occupy buildings with respected changes, which are the challenges of adapting. Given the importance of all the mentioned reasons, this research proposes a framework to identify adaption solutions from both technical and economic points of view ,using the Merlata Residential Complex located in Milan. These solutions can help to make the case study more resilient that may tackle the future climate change in the metropolitan city of Milan. The first part of this research follows five stages. Stage 1 is forecasting three future weather data by using CCWorldWeatherGen Excel-based tool for the years of 2020, 2050, and 2080, along with analyzing the pre-retrofit case study by using Energyplus software under current weather scenarios (IGDG and JRY). The Second stage follows the simulation of the case study in three future weather scenarios. These two described stages help to clarify the building energy performance in face of climate change. Propounding different envelope technologies and simulations of the upgraded case study with the five mentioned scenarios are respectively among the discussed cases of stage 3. Analysis of the results obtained from the previous stages is mentioned in stage 4 for comparing the benefits of each solution. Finally, the last stage indicates better retrofit strategies in terms of building energy performance for future scenarios. The second part of this research deals with the importance of primary energy reduction in the building sector, which has been targeted by the European Commission. Cost-optimal analysis has been done by using the NPV method for the mentioned energy retrofit technologies to comprehend the way in which these strategies affect the total energy costs and energy. This part includes four stages, which are respectively referred to identification of reference building and energy efficiency measures resulted from the first part and concluding their effects on global cost and primary energy variation by proffering approximate values for future primary energy factors. Consequently, these procedures demonstrate how this type of analysis helps to evaluate existing building performance and considered as part of a long-term retrofit strategy for the case study facility.File | Dimensione | Formato | |
---|---|---|---|
2020_06_SeyedVakili.pdf
non accessibile
Descrizione: Thesis text
Dimensione
10.32 MB
Formato
Adobe PDF
|
10.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164676