Laser development, over the last 30 years, incited the race towards the generation of progressively shorter pulses. Today, after the advent of passive mode-locking and chirped pulse amplification technique, table-top systems producing sub-100 fs pulses, at mJ energies and kHz repetition rate, are available worldwide. The desire, though, to access faster time scales and reach higher intensities, demands for techniques able to achieve much shorter pulse duration, preserving the high energy regime: here post-compression setups find their place in the vast laser landscape. The term post-compression refers to the shortening of the temporal duration of an high energy pulse, at the output of the generating laser system. It is generally made in two steps: pulse spectral broadening (by means of nonlinear laser-matter interaction) and subsequent compensation of dispersion, in a stage where the dispersive effects caused by the nonlinear propagation are “re-adjusted”. Proper techniques can lead to high peak-power pulses composed of merely few optical field cycles (or even shorter), allowing to explore new regimes of lightmatter interactions. This thesis work, carried out at the Extreme Light Infrastructure (ELI) - Beamlines facility, Prague (CZ), aims at the challenging task of post-compress sub-TW and TWpeak-power laser systems. This regime is hard to manage and, thus, is seldom analyzed in literature. A post-compression setup is designed from scratch, driven by a wide and careful state-of-art review, mainly focused on self-phase modulation (SPM) induced hollow-core-fiber (HCF) compression. Theoretical simulation are performed and expected results are outlined: stable, few-cycle output pulses can be obtained, preserving the pulse peak-power. The promising results of fewcycle TW peak-power pulses can be achieved. Such outcome is rarely obtained in literature and is of great interest in the field of laser-matter interaction. For instance, the output of the designed system (which is waiting for technical implementation and experimental validation) will be employed in the facility for studies of ultra-fast dynamics in matter and as an efficient driver for secondary sources of X-rays and accelerated particles. One of the most interesting processes where the driving pulse duration is a key parameter, indeed, is production of XUV pulses by means of high-order harmonics generation (HHG). The highly non-linear interaction leading to harmonics production is, thus, introduced and its strong dependency on pulse duration is experimentally tested with the high-energy, ultrashort lasers present in the facility (of different pulse duration, 35 fs and 15 fs). Finally, predictions are made on how the use of the high peak-power, few-cycles pulses coming from the designed setup, with their extremely short duration, will change the way light interacts with matter, enhancing the obtained results.
Negli ultimi decenni lo sviluppo della tecnologia laser ha spinto verso la produzione di impulsi sempre più brevi. Ad oggi, con l’avvento del mode-locking e della chirped pulse amplification, laser compatti e capaci di produrre impulsi di durata inferiore a 100 femtosecondi (1 fs = 10^-15 s), con energie nell’ordine dei mJ e frequenze di ripetizione nell’ordine dei kHz, sono diffusi in tutto il mondo. Nell’interazione tra radiazione laser e materia, tuttavia, moltissime applicazioni richiedono impulsi con una durata temporale ancora inferiore, di pochi fs o anche più breve, mantenendo però elevate energie (mJ) e potenze di picco (GW-TW). La “postcompressione” è la tecninca più utilizzata per raggiungere tale obiettivo. Questa, come si evince dal nome, punta alla compressione temporale di un impulso una volta fuori dal sistema laser che lo ha generato e può dar vita a impulsi la cui durata è di pochi cicli ottici (o anche inferiore). Essa si compone di due parti, la prima atta all’argamento dello spettro in entrata, mediante interazioni non-lineari che portano alla generazione di nuove frequenze, e la seconda, mirata a compensare i fenomeni di dispersione e responsabile per la compressione vera e propria. Questa tesi, svolta presso uno dei centri cardine per lo sviluppo laser in Europa, Extreme Light Infrastructure (ELI) - Beamlines, Praga (CZ), ha l’obiettivo di post-comprimere impulsi ultra-brevi ad alta energia, la cui potenza di picco si assesta nella regione dei subTW e TW. Potenze di picco così alte sono estremamente difficili da gestire e raramente indagate in letteratura. Lo stato dell’arte è analizzato a fondo, passando in rassegna i sistemi di post-compressione maggiormente utilizzati. Particolare attenzione è dedicata alle fibre cave (HCF), indivuate come lo strumento più adatto per riuscire a gestire le suddette potenze, ottenendo un impulso in uscita omogeneo e comprimibile. Sulla base dei risultati ottenuti dall’analisi precedente, viene progettato, dal principio, un apparato sperimentale capace di comprimere impulsi di alta energia (decine di mJ) dalla durata di 15 e 35 fs. I risultati attesi nella teoria vengono validati attraverso varie simulazioni, in attesa della messa in atto e della successiva validazione sperimentale. Si prevede di riuscire ad ottenere impulsi della durata di pochi cicli ottici e con potenze di picco dell’ordine del TW. Tali parametri vengono ottenuti di rado in letteratura, specialmente utilizzando lasers Ti:Sa (come quelli al centro di questa tesi). Uno dei processi non-lineari in cui la durata e l’energia dell’impulso laser assumono particolare importanza è la produzione di armoniche di alto ordine (HHG). Nella parte finale del lavoro, quindi, il fenomeno viene brevemente presentato e la sua dipendenza dalla durata temporale dell’impulso pilota viene sperimentalmente testata, avvalendosi dei sistemi laser a disposizione, capaci di produrre impulsi di 15 fs (20 mJ) e 35 fs (12mJ). Il sistema di post compressione presentato, permetterà l’accesso ad un regime raramente analizzato in letteratura, guidando la generazione di armoniche con maggiore efficienza e in un dominio spettrale più ampio.
Post-compression of high energy femtosecond pulses
FARACE, BONAVENTURA
2019/2020
Abstract
Laser development, over the last 30 years, incited the race towards the generation of progressively shorter pulses. Today, after the advent of passive mode-locking and chirped pulse amplification technique, table-top systems producing sub-100 fs pulses, at mJ energies and kHz repetition rate, are available worldwide. The desire, though, to access faster time scales and reach higher intensities, demands for techniques able to achieve much shorter pulse duration, preserving the high energy regime: here post-compression setups find their place in the vast laser landscape. The term post-compression refers to the shortening of the temporal duration of an high energy pulse, at the output of the generating laser system. It is generally made in two steps: pulse spectral broadening (by means of nonlinear laser-matter interaction) and subsequent compensation of dispersion, in a stage where the dispersive effects caused by the nonlinear propagation are “re-adjusted”. Proper techniques can lead to high peak-power pulses composed of merely few optical field cycles (or even shorter), allowing to explore new regimes of lightmatter interactions. This thesis work, carried out at the Extreme Light Infrastructure (ELI) - Beamlines facility, Prague (CZ), aims at the challenging task of post-compress sub-TW and TWpeak-power laser systems. This regime is hard to manage and, thus, is seldom analyzed in literature. A post-compression setup is designed from scratch, driven by a wide and careful state-of-art review, mainly focused on self-phase modulation (SPM) induced hollow-core-fiber (HCF) compression. Theoretical simulation are performed and expected results are outlined: stable, few-cycle output pulses can be obtained, preserving the pulse peak-power. The promising results of fewcycle TW peak-power pulses can be achieved. Such outcome is rarely obtained in literature and is of great interest in the field of laser-matter interaction. For instance, the output of the designed system (which is waiting for technical implementation and experimental validation) will be employed in the facility for studies of ultra-fast dynamics in matter and as an efficient driver for secondary sources of X-rays and accelerated particles. One of the most interesting processes where the driving pulse duration is a key parameter, indeed, is production of XUV pulses by means of high-order harmonics generation (HHG). The highly non-linear interaction leading to harmonics production is, thus, introduced and its strong dependency on pulse duration is experimentally tested with the high-energy, ultrashort lasers present in the facility (of different pulse duration, 35 fs and 15 fs). Finally, predictions are made on how the use of the high peak-power, few-cycles pulses coming from the designed setup, with their extremely short duration, will change the way light interacts with matter, enhancing the obtained results.File | Dimensione | Formato | |
---|---|---|---|
Thesis_MasterDoc.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
4.05 MB
Formato
Adobe PDF
|
4.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164722