Craft Prospect has secured its first In-Orbit Demonstration mission, Responsive Operations for Key Services (ROKS). The mission will deliver a demonstration of capability and technologies required for future spacebased Quantum Key Distribution (QKD) cybersecurity services. In order to guarantee the success of the mission, the ADCS subsystem must be carefully designed and simulated. One of the most critical issue of the mission is the required accuracy to safely deliver the quantum keys. Indeed, the reaction wheels on board produce an annoying jitter that can affect the pointing. Since desaturing the reaction wheels is not a quick operation, the only way to mitigate the problem is to decouple the reaction wheels from the satellite for the required time to deliver the key. In this way, the reaction wheels imbalances can’t affect anymore the attitude of the satellite. Anyway, during this operation, the satellite is without an adequate control to follow the targets on ground since the magnetorquers can’t provide a torque that is strong enough. In order to solve this problem, a MEMs mirror is exploited. The idea is to provide the attitude control inputs to the satellite for the slew and pointing maneuvers. Then, when the maximum achievable accuracy is reached, the reaction wheels get decoupled from the satellite. At this point, the reaction wheels imbalances don’t affect anymore the attitude, and the remaining pointing error is supplied to the mirror on board that will work to reduce it further. This will guarantee that the targets on ground will be acquired for the necessary time even if the satellite is not pointing to them directly. Since the mirror is activated magnetically and that its dynamics is negligible with respect to the satellite one, no further errors get introduced in the system leading to a substantial improvement in terms of accuracy. The work starts with a brief introduction of the mission, the specifications and the requirements. After that, a study of the satellite orbit is provided to proper identify the possible targets and to estimate the lifetime of the mission. For the attitude control, a optimal quaternion feedback control has been chosen. Instead, for the attitude determination, the chosen method is the QUEST. The mission has been simulated in a disturbing environment and with noisy sensors to show the robustness of the system. Finally, the mirror has been designed to match the requirements of the mission and work together the attitude control law. The results show that the proposed approach is successful and that the accuracy of the pointing can be increased by applying this method.
Craft Prospect si è assicurata la sua prima missione in orbita a cui è stato attribuito il nome ROKS. L’obiettivo è quello di fornire una dimostrazione delle capacità e technologie richieste per i servizi di cybersecurity a chiave quantistica forniti dallo spazio. Al fine di garantire il successo della missione, il sottosistema ADCS deve essere attentamente progettato e simulato. Una delle parti più critiche della missione è l’accuratezza richiesta per consegnare in sicurezza le chivi quantistiche. Infatti, le ruote di reazione a bordo producono una fastidiosa vibrazione che può influenzare il puntamento. Poichè desaturare le ruote di reazione non è un’operazione rapida, l’unico modo per risolvere il problema è quello di disaccoppiare le ruote di reazione dal satellite per il tempo richiesto per consegnare la chiave. In questo modo, gli squilibri delle ruote di reazione non possono più influenzare l’assetto del satellite. Tuttavia, durante questa operazione, il satellite è sprovvisto di un controllo adequato per seguire gli obiettivi a terra poichè le bobine magnetiche montate sul satellite non possono fornire una coppia abbastanza forte. Al fine di risolvere il problema, viene sfruttato uno specchio MEMs. L’idea è quella di fornire i comandi d’assetto al satellite per le manovre di orientazione e puntamento. In seguito, quando la massima accuratezza possibile viene raggiunta, le ruote di reazione vengono disaccoppiate dal satellite. A questo punto, gli squilibri delle ruote di reazione non influenzano più l’assetto e l’errore di puntamento rimanente viene fornito allo specchio che lavorerà per ridurlo ulteriormente. Questo garantirà che gli obiettivi a terra saranno acquisiti per il tempo necessario anche se il satellite non sta puntando direttamente a loro. Poichè lo specchio è attivato magneticamente e la sua dinamica è trascurabile rispetto a quella del satellite, non vengono introdotti ulteriori errori nel sistema portando a sostanziale miglioramento in termini di accuratezza. Il lavoro comincia con una breve introduzione della missione, delle specifiche del satellite e dei requisiti. Dopodiché, viene fornito uno studio dell’orbita del satellite per identificare adequatamente i possibili obiettivi e per stimare la durata della missione. Per il controllo dell’assetto è stato scelto un controllo ottimo. Invece, per la determinazione dell’assetto, è stato scelto il metodo QUEST. La missione è stata simulata in un ambiente con disturbi e con sensori rumorosi per mostare la robustezza del sistema. Infine, lo specchio viene progettato per soddisfare i requisiti della missione e lavorare insieme alla legge di controllo del satellite. I risultati mostrano che l’approccio proposto è efficace e che l’accuratezza del puntamento può essere migliorata applicando questo metodo.
Attitude control coupled with a mirror for satellite pointing
VENANZETTI, DANIELE
2019/2020
Abstract
Craft Prospect has secured its first In-Orbit Demonstration mission, Responsive Operations for Key Services (ROKS). The mission will deliver a demonstration of capability and technologies required for future spacebased Quantum Key Distribution (QKD) cybersecurity services. In order to guarantee the success of the mission, the ADCS subsystem must be carefully designed and simulated. One of the most critical issue of the mission is the required accuracy to safely deliver the quantum keys. Indeed, the reaction wheels on board produce an annoying jitter that can affect the pointing. Since desaturing the reaction wheels is not a quick operation, the only way to mitigate the problem is to decouple the reaction wheels from the satellite for the required time to deliver the key. In this way, the reaction wheels imbalances can’t affect anymore the attitude of the satellite. Anyway, during this operation, the satellite is without an adequate control to follow the targets on ground since the magnetorquers can’t provide a torque that is strong enough. In order to solve this problem, a MEMs mirror is exploited. The idea is to provide the attitude control inputs to the satellite for the slew and pointing maneuvers. Then, when the maximum achievable accuracy is reached, the reaction wheels get decoupled from the satellite. At this point, the reaction wheels imbalances don’t affect anymore the attitude, and the remaining pointing error is supplied to the mirror on board that will work to reduce it further. This will guarantee that the targets on ground will be acquired for the necessary time even if the satellite is not pointing to them directly. Since the mirror is activated magnetically and that its dynamics is negligible with respect to the satellite one, no further errors get introduced in the system leading to a substantial improvement in terms of accuracy. The work starts with a brief introduction of the mission, the specifications and the requirements. After that, a study of the satellite orbit is provided to proper identify the possible targets and to estimate the lifetime of the mission. For the attitude control, a optimal quaternion feedback control has been chosen. Instead, for the attitude determination, the chosen method is the QUEST. The mission has been simulated in a disturbing environment and with noisy sensors to show the robustness of the system. Finally, the mirror has been designed to match the requirements of the mission and work together the attitude control law. The results show that the proposed approach is successful and that the accuracy of the pointing can be increased by applying this method.File | Dimensione | Formato | |
---|---|---|---|
2020_06_Venanzetti.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.06 MB
Formato
Adobe PDF
|
4.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/164906