Understanding and controlling plasma-wall interaction will be of paramount importance for the success of nuclear fusion research. In this respect, presentday tokamaks are not able to reach the heat and ion fluxes expected in future devices, such as ITER. For this reason, the experimental investigations of plasma-facing materials modifications due to plasma exposures in ITER-like conditions can be performed, at present, only in linear devices. In this framework, helium (He) is acquiring increasingly importance, due to its unavoidable presence in D-T fusion reactions. Moreover, the discovery of tungsten fuzz formation has raised many concerns between researchers. However, the effects of He-plasma exposures of tungsten in conditions outside the domain for fuzz to occur are very little known, and even less in the case of tungsten coatings. Moreover, numerical simulations, to foresee surface modifications of exposed materials, have been seldom applied. This thesis work tries to fill in some of these gaps. Nanostructured tungsten coatings have been prepared by means of the Pulsed Laser Deposition (PLD) technique, which allows to suitably control films properties. These samples, in addition to bulk ones as a reference, have been exposed to He-plasmas in the GyM linear plasma device at ISTP-CNR in Milan, in conditions outside fuzz domain. The exposures have been preceded by a wide characterization of the He-plasma in the machine, paving the way for future plasma simulations. In particular, in accordance with previous studies in GyM, electron temperature showed a decreasing behaviour with increasing neutral density, while electron density differed between noble gases and hydrogenic species. Post-exposure SEM analysis revealed the formation of ripple-like nanostructures on more compact samples, while an overall disappearence of the initial morphology could be observed on the more porous ones. Investigations on ripples possible formation mechanism concluded that no model is able, at present, to fully explain the phenomenology described. Finally, surface morphology simulations, performed with ERO2.0, showed the ability of the code to account for diffusion phenomena, while ripples could be obtained only at high incidence angles and exploiting shadowing effects.
La comprensione e il controllo dell’interazione plasma-parete sarà di fondamentale importanza per il successo della ricerca sulla fusione nucleare. A questo proposito, i tokamak odierni non sono in grado di raggiungere i flussi di calore e ioni attesi in futuri dispositivi come ITER. Per questa ragione, lo studio delle modifiche dei materiali di prima parete, a causa dell’esposizione a plasmi in condizioni simili a ITER, può avvenire solo, al momento, in macchine lineari. In questo contesto, l’elio (He) sta acquisendo una sempre maggior importanza, a causa della sua inevitabile presenza nelle reazioni di fusione D-T. Inoltre, la scoperta della formazione del fuzz sul tungsteno ha fatto sorgere non poche preoccupazioni tra i ricercatori. Tuttavia, gli effetti dell’esposizione del tungsteno a plasmi di elio in condizioni esterne al dominio di formazione del fuzz sono ancora poco noti, e ancor meno nel caso di rivestimenti (coatings). In aggiunta, sono state raramente utilizzate simulazioni numeriche per prevedere le modifiche superficiali di materiali esposti. Questo lavoro di tesi cerca di colmare alcune di queste lacune. Coatings di tungsteno nanostrutturato sono stati preparati attraverso deposizione laser pulsata (PLD), la quale permette di controllare opportunamente le proprietà dei film. Questi campioni, in aggiunta ad alcuni bulk di riferimento, sono stati esposti a plasmi di elio nella macchina lineare GyM del centro ISTP-CNR di Milano, in condizioni al di fuori del dominio di formazione del fuzz. Le esposizioni sono state precedute da un’ampia caratterizzazione del plasma di elio nella macchina, spianando la strada per future simulazioni di plasma. In particolare, in accordo con precedenti studi in GyM, la temperatura elettronica ha mostrato un andamento decrescente all’aumentare della densità dei neutri, mentre la densità elettronica ha evidenziato differenze tra gas nobili e specie idrogenoidi. La successiva analisi SEM dei campioni esposti ha rivelato la formazione di ondulazioni sui più compatti, mentre una complessiva scomparsa della morfologia iniziale per i più porosi. Le indagini sul possibile meccanismo di formazione delle ondulazioni hanno concluso che nessun modello, al momento, è in grado di spiegare interamente il fenomeno. Infine, simulazioni sulla morfologia superficiale, condotte con ERO2.0, hanno mostrato la capacità del codice di tener conto di fenomeni diffusivi, mentre si sono potute ottenere ondulazioni solo ad alti angoli di incidenza e sfruttando effetti di shadowing.
Exposure of nanostructured tungsten coatings to helium-plasmas in the GyM linear device
ALBERTI, GABRIELE
2018/2019
Abstract
Understanding and controlling plasma-wall interaction will be of paramount importance for the success of nuclear fusion research. In this respect, presentday tokamaks are not able to reach the heat and ion fluxes expected in future devices, such as ITER. For this reason, the experimental investigations of plasma-facing materials modifications due to plasma exposures in ITER-like conditions can be performed, at present, only in linear devices. In this framework, helium (He) is acquiring increasingly importance, due to its unavoidable presence in D-T fusion reactions. Moreover, the discovery of tungsten fuzz formation has raised many concerns between researchers. However, the effects of He-plasma exposures of tungsten in conditions outside the domain for fuzz to occur are very little known, and even less in the case of tungsten coatings. Moreover, numerical simulations, to foresee surface modifications of exposed materials, have been seldom applied. This thesis work tries to fill in some of these gaps. Nanostructured tungsten coatings have been prepared by means of the Pulsed Laser Deposition (PLD) technique, which allows to suitably control films properties. These samples, in addition to bulk ones as a reference, have been exposed to He-plasmas in the GyM linear plasma device at ISTP-CNR in Milan, in conditions outside fuzz domain. The exposures have been preceded by a wide characterization of the He-plasma in the machine, paving the way for future plasma simulations. In particular, in accordance with previous studies in GyM, electron temperature showed a decreasing behaviour with increasing neutral density, while electron density differed between noble gases and hydrogenic species. Post-exposure SEM analysis revealed the formation of ripple-like nanostructures on more compact samples, while an overall disappearence of the initial morphology could be observed on the more porous ones. Investigations on ripples possible formation mechanism concluded that no model is able, at present, to fully explain the phenomenology described. Finally, surface morphology simulations, performed with ERO2.0, showed the ability of the code to account for diffusion phenomena, while ripples could be obtained only at high incidence angles and exploiting shadowing effects.File | Dimensione | Formato | |
---|---|---|---|
Tesi-Alberti.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
14.46 MB
Formato
Adobe PDF
|
14.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/165359