Polymer Electrolyte Membrane Fuel Cells (PEMFC) are electrochemical devices able to produce electricity by using chemical energy of hydrogen and oxygen. Fuel cells minimize CO2 emissions, while they have just water as an output. For this reason their are very interesting for automotive applications, even if right now their usage is limited due to the short lifetime. This thesis is part of the European project ID-FAST, that aims at developing accelerated stress tests (AST’s) able to reproduce the main phenomena that cause the degradation of PEMFC components. The starting point of this work are the data previously obtained by MRT FC Lab staff, that has simulated a mitigated Start-Up Shut-Down (SUSD) process on a segmented cell, a cell composed by four segments and able to analyze four different sections of the MEA. Analyzing the response of the different segments to degradation, both in terms of voltage and ECSA loss, it has been verified that SUSD is an highly heterogeneous process. In this perspective, following the guidelines of IDFAST partners, a new hardware (Zero-Gradient cell) has been used. It eliminates all the heterogeneities (temperature, humidification and gas concentration are constant in the whole area) and it is able to reproduce a specific region of the stack. After validating the new hardware through tests chosen in order to simulate specific points of a driving cycle, some DoE’s AST’s are performed in order to evaluate degradation in the most critical components of the MEA: membrane (membrane AST) and catalyst layer (carbon support AST and electrocatalyst AST). Then, starting from the data obtained with the segmented cell, a new AST able to describe the voltage profile of the first segment (the most degraded region) is designed. The results of this new AST, that is characterized by a unitary acceleration factor, are compared with carbon support and electrocatalyst AST in order to understand which are the most influent phenomena in SUSD process: the new AST results are comparable with what is obtained from electrocatalyst AST. Finally, after studying the effect of the holding time at high voltage on the Pt oxides formation, it is proposed a new AST characterized by the same voltage profile of SUSD AST, but with acceleration factor highly reduced.
Le celle a combustibile a membrana polimerica (PEMFC) sono dei dispositivi elettrochimici in grado di produrre energia elettrica sfruttando l’energia chimica dell’idrogeno e dell’ossigeno in ingresso. Sono dei dispositivi che minimizzano le emissioni di CO2, avendo in uscita solamente acqua. Per questo motivo é molto interessante il loro utilizzo nel settore automobilistico, sebbene questo sia ad oggi frenato dalla loro limitata vita utile. Questo lavoro di tesi é parte del progetto europeo ID-FAST, il cui scopo é quello di sviluppare delle procedure accelerate (AST) in grado di riprodurre i principali fenomeni che causano la degradazione dei componenti delle PEMFC. Il punto di partenza di questa tesi sono i dati precedentemente ottenuti dallo staff delMRT Fuel Cell Lab, che ha simulato un processo mitigato di accensione e spegnimento (Start-Up Shut-Down o SUSD) su una cella composta da quattro segmenti (Segmented cell) in modo da studiare quattro sezioni diverse della MEA. Studiando la risposta alla degradazione dei segmenti, sia in termini di perdita di potenziale che di area attiva, si é verificato che SUSD é un processo fortemente eterogeneo. In quest’ottica, seguendo le direttive dei partners del progetto ID-FAST, é stato usato un nuovo hardware (Zero Gradient cell) che elimina le eterogeneità spaziali (temperatura, umiditá e concentrazione dei gas sono costanti per tutta l’area attiva), riuscendo a riprodurre una specifica regione dello stack. Dopo aver validato il nuovo hardware tramite delle prove scelte in modo da simulare dei punti specifici di un ciclo di un ciclo, vengono effettuate delle AST proposte dal DoE in grado di studiare la degradazione dei due componenti piú critici della MEA: la membrana (AST membrana) e il catalyst layer (AST di corrosione del supporto di carbonio e AST di dissoluzione del platino). Successivamente, partendo dai dati ottenuti sulla segmented cell, viene progettata una nuova AST in grado di riprodurre il profilo di potenziale del primo segmento, la zona piú degradata. I risultati di questa nuova AST, caratterizzata da un fattore di accelerazione unitario, vengono poi comparati con le AST di degradazione del catalyst layer per vedere quale sia il fenomeno piú influente nel processo di SUSD: i risultati della nuova AST sono comparabili con quelli ottenuti dalla AST di dissoluzione del platino. Infine, dopo aver studiato tramite degli opportuni test l’influenza che il tempo di tenuta ad alta tensione ha sulla formazione degli ossidi di platino, viene proposta una nuova AST caratterizzata dallo stesso profilo di potenziale della SUSD AST, ma con un fattore di accelerazione fortemente ridotto.
Experimental investigation of accelerated stress tests in zero-gradient hardware for polymer electrolyte fuel cell
MAGGIORE, GIACOMO;FRANCIONI, ALICE
2019/2020
Abstract
Polymer Electrolyte Membrane Fuel Cells (PEMFC) are electrochemical devices able to produce electricity by using chemical energy of hydrogen and oxygen. Fuel cells minimize CO2 emissions, while they have just water as an output. For this reason their are very interesting for automotive applications, even if right now their usage is limited due to the short lifetime. This thesis is part of the European project ID-FAST, that aims at developing accelerated stress tests (AST’s) able to reproduce the main phenomena that cause the degradation of PEMFC components. The starting point of this work are the data previously obtained by MRT FC Lab staff, that has simulated a mitigated Start-Up Shut-Down (SUSD) process on a segmented cell, a cell composed by four segments and able to analyze four different sections of the MEA. Analyzing the response of the different segments to degradation, both in terms of voltage and ECSA loss, it has been verified that SUSD is an highly heterogeneous process. In this perspective, following the guidelines of IDFAST partners, a new hardware (Zero-Gradient cell) has been used. It eliminates all the heterogeneities (temperature, humidification and gas concentration are constant in the whole area) and it is able to reproduce a specific region of the stack. After validating the new hardware through tests chosen in order to simulate specific points of a driving cycle, some DoE’s AST’s are performed in order to evaluate degradation in the most critical components of the MEA: membrane (membrane AST) and catalyst layer (carbon support AST and electrocatalyst AST). Then, starting from the data obtained with the segmented cell, a new AST able to describe the voltage profile of the first segment (the most degraded region) is designed. The results of this new AST, that is characterized by a unitary acceleration factor, are compared with carbon support and electrocatalyst AST in order to understand which are the most influent phenomena in SUSD process: the new AST results are comparable with what is obtained from electrocatalyst AST. Finally, after studying the effect of the holding time at high voltage on the Pt oxides formation, it is proposed a new AST characterized by the same voltage profile of SUSD AST, but with acceleration factor highly reduced.File | Dimensione | Formato | |
---|---|---|---|
2020_04_FRANCIONI_MAGGIORE.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
21.28 MB
Formato
Adobe PDF
|
21.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/165398