According to European Environment Agency, noise pollution is the major environmental health problem in Europe and road traffic is the predominant noise generator in urban areas. There are four primary sources of road traffic noise, i.e. power unit, intake, exhaust, and tyres. In the past decades, while the noise contributions from the other three sources have been significantly reduced, the tyre/road noise just achieve a small reduction and therefore is becoming the dominant one. It is believed that the tyre/road noise will be the critical factor to achieve the most recent noise limitation. Many studies have been conducted on the tyre/road noise: most of the researches refer to the sound generation, while only a limited number is focused on the understandings of the amplification phenomena which occur through the transmission path. By predicting the response function of the system, it is possible to reduce the noise radiated to the pedestrians by limiting the amplification zones. This thesis work, developed by a collaboration between Pirelli Tyre S.p.A. and Politecnico di Milano, aims at analysing the amplification phenomena that occur at the contact patch and through the airborne transmission path, and creating numerical models that are able to predict the sound field generated during indoor tests. With this instrument, it is possible to reduce the experimental costs associated to the prototype creation and test, and improve the knowledge required to build high performance tread patterns with respect to noise emissions. Approximated stationary models with rigid walls are built, starting from the footprint tread pattern geometries to the full tread patterned tyres, which consider shoulder roundness and tyre deformation. The eigenfrequencies or the frequency response functions of each model, obtained by a numerical computation, are analysed to highlight differences and provide an accurate study on the tyre parameters. The results show that the system eigenfrequencies and the horn effect are sensitive to the footprint cavity geometries and to the tyre shape and deflection.
Secondo l’Agenzia Europea per l’Ambiente, l’inquinamento sonoro è uno dei maggiori problemi ambientali che danneggiano la salute dell’uomo in Europa e il traffico stradale ne è la maggiore causa nelle aree urbane. Tale rumore è causato principalmente da quattro sorgenti: combustione, aspirazione, scarico e contatto pneumatico/strada. Negli anni è stata ampiamente ridotta la generazione sonora causata dalle prime tre cause, rendendo così predominante quella generata dagli pneumatici. La maggior parte delle ricerche trattano la generazione del rumore, mentre solo una piccola parte è focalizzata sullo studio dei fenomeni di amplificazione che sono presenti nel percorso di radiazione. Per mezzo di una corretta previsione della funzione di risposta del sistema è possibile ridurre il rumore radiato verso i pedoni grazie alla limitazione delle zone di amplificazione. Questa tesi, sviluppata grazie ad una collaborazione tra Pirelli Tyre S.p.A. ed il Politecnico di Milano, ha lo scopo di analizzare i fenomeni di amplificazione che avvengono nell’impronta e nella trasmissione attraverso l’aria circostante, e di creare un modello numerico in grado di stimare il campo acustico generato durante le prove indoor. Grazie a questo strumento, sarà possibile ridurre i costi sperimentali associati alla creazione e alla sperimentazione dei prototipi di pneumatici e migliorare la conoscenza necessaria per il design di battistrada ad elevate performance con ridotte emissioni sonore. Per raggiungere tale obiettivo, sono stati creati modelli stazionari a pareti rigide, partendo da approssimazioni della geometria del battistrada nell’impronta ed arrivando fino a modelli di pneumatici nei quali viene considerata anche la deformazione dello stesso. Le frequenze proprie e le funzioni di risposta in frequenza, calcolate numericamente, sono state analizzate per portare alla luce le differenze e fornire uno studio accurato sui principali parametri dello pneumatico. I risultati mostrano che le frequenze proprie del sistema e l’amplificazione sono sensibili alla geometria delle cavità in impronta oltre che alla geometria e alla deformazione dello pneumatico stesso.
Tyre rolling noise : physical modelling of the footprint region and of the radiated sound field
SPREAFICO, GIACOMO
2018/2019
Abstract
According to European Environment Agency, noise pollution is the major environmental health problem in Europe and road traffic is the predominant noise generator in urban areas. There are four primary sources of road traffic noise, i.e. power unit, intake, exhaust, and tyres. In the past decades, while the noise contributions from the other three sources have been significantly reduced, the tyre/road noise just achieve a small reduction and therefore is becoming the dominant one. It is believed that the tyre/road noise will be the critical factor to achieve the most recent noise limitation. Many studies have been conducted on the tyre/road noise: most of the researches refer to the sound generation, while only a limited number is focused on the understandings of the amplification phenomena which occur through the transmission path. By predicting the response function of the system, it is possible to reduce the noise radiated to the pedestrians by limiting the amplification zones. This thesis work, developed by a collaboration between Pirelli Tyre S.p.A. and Politecnico di Milano, aims at analysing the amplification phenomena that occur at the contact patch and through the airborne transmission path, and creating numerical models that are able to predict the sound field generated during indoor tests. With this instrument, it is possible to reduce the experimental costs associated to the prototype creation and test, and improve the knowledge required to build high performance tread patterns with respect to noise emissions. Approximated stationary models with rigid walls are built, starting from the footprint tread pattern geometries to the full tread patterned tyres, which consider shoulder roundness and tyre deformation. The eigenfrequencies or the frequency response functions of each model, obtained by a numerical computation, are analysed to highlight differences and provide an accurate study on the tyre parameters. The results show that the system eigenfrequencies and the horn effect are sensitive to the footprint cavity geometries and to the tyre shape and deflection.File | Dimensione | Formato | |
---|---|---|---|
2020_06_Spreafico.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
6.49 MB
Formato
Adobe PDF
|
6.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/165408