Spinal cord injury (SCI) is defined as permanent or temporary damage to the spinal cord resulting in a degree of motor / sensory dysfunction or bladder / intestinal dysfunction. It represents only a small part of all injuries, but the disabilities and life changes associated with this injury make it one of the most catastrophic injuries. Depending on the mode of onset, its etiology can be traumatic (impact, collision, sport) or non-traumatic (infections, chronic processes, tumors). Traumatic SCI can be divided into primary and secondary lesion, from the pathophysiological point of view. The primary injury consists in compression or sectioning of the spinal cord (SC) and causes damage to the cells of the central nervous system, blood vessels and the blood-spinal barrier. The secondary degenerative events, which follow the primary insult, result in the progressive cell death of neurons, astrocytes and oligodendrocytes. In this phase, neuroinflammation plays a key role and brings systemic and local consequences, contributing to the progression of the lesion with consequent development of scar tissue and inhibition of axon regenerative processes. Many cells are involved in the inflammatory response following the injury, including macrophages and astrocytes. Macrophages can be divided into: microglia cells (resident in SC) and peripheral macrophages (from the bone marrow); and they can assume two different phenotypes: M1 (pro-inflammatory) and M2 (anti-inflammatory). M1 cells are neurotoxic and are, in fact, responsible for tissue damage after SCI, preventing neuronal regeneration. M2 cells, on the other hand, promote axonal regrowth, remyelination and neuronal regeneration. The regeneration of the SC is fundamentally prevented due to the prevalence of the M1 phenotype: the M2 type response, in fact, is of minor entity and occurs only temporarily. After the trauma, astrocytes become responsive too and show a range of changes in their morphology and phenotype. Reactive astrocytes, close to the injury, may have either harmful or beneficial effects in the central nervous system (CNS) damage, with variable phenotypes called A1 and A2. Astrocytes with A1 phenotype have shown a pro-inflammatory effect, releasing toxic factors for neuronal cells, while A2 astrocytes have a protective effect by upregulating neurotrophic factors to counteract neuronal degeneration and boost regeneration. The only drug approved by the Food and Drug Administration (FDA) for the treatment of SCI, in the acute phase, is methylprednisolone sodium succinate (MPSS), a synthetic corticosteroid, whose clinical use in the acute phase has been the subject of debate for many years. Preclinical data show a neuroprotective role, however problems related to the high-dose route of administration (intravenous) remain, which causes pneumonia, infections and pulmonary embolism, increasing the risk of death. Given the key role of astrocytes in the progression of inflammation in the secondary lesion, some studies have focused on the genetic ablation of the astrocytic population but this had negative consequences for recovery in SCI, like the resulting scar formation. This suggests that the optimal treatment for SCI will need to shift astrocytes towards a phenotype that promotes a better neuronal survival and axonal regeneration instead of reducing the astrocyte-based glial scar. Consequently, there is a pressing need for treatment to target activated astrocytes and their unsafe response after injury to ensure some preservative effect during the progressive damage. Different approaches have been employed to neutralize the negative impacts of activated astrocytes, such as genetic manipulation or pharmacological/biological therapies. However, these approaches suffer some limitations because they are not selective for astrocytes. Several biomaterials have been developed to deliver pharmacological molecules and/or therapeutic cells in order to improve spinal cord recovery and functional outcomes after injury. Polymeric nanoparticles (NPs) offer considerable advantages in compound delivery, controlling their release over time, moreover they can be targeted to specific cells. Different NP systems have been examined for treating the injured spinal cord, but few attempts have been made to target astrocytes, without selective cellular action. There is growing evidence that microglia/macrophages are the first cells that process NPs, limiting other targets achievement. Microglia/macrophages take up foreign materials within a short time, and following this phagocytic mechanism NPs are degraded by the lysosomal system so the therapeutic effect is reduced. More selective nanovector-mediated NPs are needed to reduce phagocytic recognition by microglia/macrophages. In this thesis work, it has been developed and characterized, in vitro and in vivo, a functionalized nanogel-based nanovector, with high colloidal stability, biocompatibility, and capacity of compounds loading and releasing. This nanogel has been functionalized with different moieties for targeting astrocytes, concomitantly limiting microglia/macrophages uptake. In particular, four moieties were investigated, obtained by the combination of three chemical groups conjugated to NG: functionalization with 3-bromopropylamine hydrobromide allowed to obtain a coating of primary amines on the surface of the NG; the other two fractions are constituted by the RhB or Cy5 chromophores, used to visualize the NG in in vitro and in vivo experiments. The NG was investigated for cellular selectivity, uptake, and drug delivery, identifying the most promising one for selective astrocyte treatment in vitro and vivo SCI models. It has been demonstrated its selectivity towards astrocytes, and limited uptake by macrophages when functionalized with both -NH2 and -Cy5 groups. In vitro experiments showed that the internalization was mediated by a clathrin-dependent endocytic pathway. After internalization into the cytoplasm of astrocytes, NG undergoes lysosomal degradation and releases compounds with potential therapeutic efficacy. Subsequently, the NGs, with the four moieties, were injected into the spinal cord of C57BL/6J mice, in order to verify the distribution of the NG and the selective internalization for astrocytes, in vivo. The NG signal, functionalized with the -NH2 -Cy5 coating, was identified in a diffuse manner and co-localized almost exclusively with the astrocytes. Some microglial cells and neurons was positive to the NG signal, but only in the epicenter of the lesion, assuming the altered integrity of the membrane of these cells near the injured area. Finally, the internalization of NG formulations in human iPS cells was tested, discovering that the internalization of NG could be comparable to the absorption seen in murine astrocytes, thus suggesting the potential applicability in human patients. This study suggests a method of drug administration characterized by a very high selectivity in affecting activated astrocytes and therefore modulating the inflammatory response, that characterizes the secondary lesion after SCI. This approach lays the foundations for subsequent drug delivery studies, also in other therapeutic contexts, for example, in the case of neurological diseases or pathologies that have an inflammatory component mediated by astrocytes.
La Lesione del midollo spinale (LMS) è definita come un danno, permanente o temporaneo, del midollo spinale, risultante in un grado di disfunzione motoria / sensoriale o disfunzione vescicale / intestinale. Rappresenta solo una piccola parte di tutti gli infortuni, ma le disabilità e i cambiamenti della vita, associati a questa lesione, la rendono una delle lesioni più catastrofiche. A seconda della modalità di insorgenza, la sua eziologia può essere di natura traumatica (impatto, scontro, sport) o non traumatica (infezioni, processi cronici, tumori). Le LMS traumatiche possono essere suddivise, dal punto di vista fisiopatologico, in lesione primaria e secondaria. La lesione primaria consiste nella compressione o nel sezionamento del midollo spinale (MS) e causa un danneggiamento delle cellule del sistema nervoso centrale, dei vasi sanguigni e della barriera emato-spinale. Gli eventi degenerativi secondari, che si susseguono all’insulto primario, hanno come conseguenza la morte cellulare progressiva di neuroni, astrociti e oligodendrociti. In questa fase, la neuroinfiammazione gioca un ruolo chiave e porta con sé conseguenze sistemiche e locali, contribuendo alla progressione della lesione con conseguente sviluppo di tessuto cicatriziale e inibizione dei processi rigenerativi degli assoni. Molte cellule sono coinvolte nella risposta infiammatoria in seguito alla lesione, tra cui macrofagi e astrociti. I macrofagi possono essere distinti in: cellule della microglia (residenti nel MS) e macrofagi periferici (provenienti dal midollo osseo); e possono assumere due diversi fenotipi: M1 (pro-infiammatorio) e M2 (anti-infiammatorio). Le cellule M1 sono neurotossiche e infatti sono responsabili del danno tissutale dopo la LMS, impedendo la rigenerazione neuronale. Le cellule M2, invece, promuovono la ricrescita assonale, la rimielinizzazione e la rigenerazione neuronale. La rigenerazione del MS è impedita fondamentalmente a causa della prevalenza del fenotipo M1: la risposta di tipo M2, infatti, è di minore entità e si manifesta solo temporaneamente. In seguito al trauma, anche gli astrociti diventano reattivi e mostrano una serie di cambiamenti nella morfologia e nel fenotipo. Gli astrociti reattivi, nella zona di lesione, possono avere effetti sia dannosi che benefici sul danno al sistema nervoso centrale, assumendo due distinti fenotipi denominati rispettivamente A1 e A2: gli astrociti del fenotipo A1 mostrano un effetto pro-infiammatorio, rilasciando fattori tossici per le cellule neuronali; mentre gli astrociti A2 hanno un effetto protettivo sovra-regolando i fattori neurotrofici che contrastano la degenerazione neuronale e ne favoriscono la rigenerazione. L’unico farmaco ad oggi approvato dalla Food and Drug Administration (FDA) per il trattamento della LMS, in fase acuta, è il metilprednisolone sodio succinato (MPSS), un corticosteroide sintetico, il cui utilizzo clinico in fase acuta è stato oggetto di dibattito per molti anni. I dati preclinici mostrano un ruolo neuroprotettivo, tuttavia restano problemi legati alla via di somministrazione ad alte dosi (intravenosa), che provoca polmoniti, infezioni ed embolia polmonare, aumentando il rischio di morte. Dato il ruolo chiave degli astrociti nella progressione dell’infiammazione nella lesione secondaria, alcuni studi si sono concentrati sull'ablazione genetica della popolazione astrocitaria, ma ciò ha avuto conseguenze negative per il recupero nella LMS, come la conseguente formazione di cicatrici gliali. Ciò suggerisce che il trattamento ottimale dovrà polarizzare gli astrociti verso un fenotipo che promuova la sopravvivenza dei neuroni e la rigenerazione assonale, invece di ridurne il numero, per garantire un effetto conservativo nella progressione del danno. Diversi approcci sono stati impiegati per neutralizzare gli effetti negativi degli astrociti attivati , come la manipolazione genica e le terapie farmacologiche / biologiche. Tuttavia, questi approcci mostrano alcune limitazioni: non sono selettivi per gli astrociti, oppure comportano implicazioni etiche legate all’uso dell'ingegneria genetica. Per ovviare a queste problematiche, negli ultimi anni, sono stati sviluppati vari biomateriali per veicolare molecole farmacologiche e / o cellule al fine di migliorare il recupero terapeutico e gli esiti funzionali dopo la LMS, minimizzando gli effetti collaterali. In particolare, le nanoparticelle polimeriche (NP) offrono notevoli vantaggi nel trasferimento di molecole, controllandone il rilascio nel tempo e riconoscendo alcune cellule in maniera selettiva. Diversi sistemi a base di NP sono stati esaminati per il trattamento del midollo spinale lesionato, ma sono stati fatti pochi tentativi per colpire selettivamente gli astrociti. Microglia / macrofagi sono le prime cellule in grado di captare le NP, fagocitandone i materiali estranei e degradandoli nei lisosomi, limitandone in questo modo il raggiungimento verso le cellule bersaglio. Da qui, il bisogno di progettare NP più selettive per gli astrociti e meno riconoscibili dal sistema immunitario. In questo lavoro di tesi è stato sviluppato e caratterizzato, in vitro e in vivo, un nanovettore a base nanogel, con elevata stabilità colloidale, biocompatibilità e capacità di carico e rilascio di composti. Questo nanogel (NG) è stato funzionalizzato con diverse molecole, al fine di renderlo selettivo per gli astrociti e limitandone contemporaneamente l'assorbimento da parte della popolazione microgliale / macrofagica. In particolare, sono state indagate quattro funzionalizzazioni principali, ottenute dalla combinazione di tre gruppi chimici coniugati al NG: la funzionalizzazione con bromo-propilammina ha permesso di ottenere un coating di ammine primarie sulla superficie del NG; le altre due frazioni sono costituite dai cromofori RhB o Cy5, utilizzati per visualizzare i NG in esperimenti in vitro e in vivo. Il NG è stato studiato per verificare quale funzionalizzazione fosse la più selettiva per gli astrociti e come potesse avvenire l'assorbimento cellulare e il trasferimento di molecole. È stata dimostrata la selettività nei confronti degli astrociti e un’internalizzazione limitata da parte di microglia e macrofagi, in presenza di NG funzionalizzato con entrambi i gruppi -NH2 e -Cy5. Gli esperimenti in vitro hanno altresì dimostrato che l'internalizzazione è mediata da una via endocitica clatrina dipendente. In seguito all'internalizzazione nel citoplasma degli astrociti, il NG subisce degradazione lisosomiale e rilascia i composti, caricati al suo interno, con una potenziale efficacia terapeutica. Successivamente i NG, con le quattro funzionalizzazioni, sono stati iniettati nel midollo spinale di topi C57BL/6J, in modo da verificare la distribuzione del NG e l’internalizzazione selettiva per gli astrociti, in vivo. Il segnale del NG, funzionalizzato con il coating -NH2 -Cy5, è stato individuato in maniera diffusa e co-localizzata quasi esclusivamente negli astrociti. Alcune cellule microgliali e neuroni e sono risultati positivi ai NG, ma solo nell'epicentro della lesione, ipotizzando l'alterata integrità della membrana di tali cellule nei pressi della zona lesionata. Infine, è stata testata l’internalizzazione delle formulazioni di NG nelle cellule iPS umane, scoprendo che l'internalizzazione di NG poteva essere paragonabile all'assorbimento visto negli astrociti murini, suggerendo quindi, la potenziale traslabilità nei pazienti umani. Questo studio suggerisce una modalità di somministrazione di farmaci, caratterizzata da un'altissima selettività nel colpire gli astrociti attivati e quindi di modulare la risposta infiammatoria che caratterizza la lesione secondaria dopo LMS. Questo approccio pone le fondamenta per successivi studi di drug delivery, anche in altri contesti terapeutici, ad esempio, in caso di malattie neurologiche o patologie che abbiano una componente infiammatoria mediata da astrociti.
Caratterizzazione di diverse funzionalizzazioni coniugate a un nanovettore per il trattamento selettivo di astrociti nella lesione del midollo spinale
CREMONESI, GIADA
2018/2019
Abstract
Spinal cord injury (SCI) is defined as permanent or temporary damage to the spinal cord resulting in a degree of motor / sensory dysfunction or bladder / intestinal dysfunction. It represents only a small part of all injuries, but the disabilities and life changes associated with this injury make it one of the most catastrophic injuries. Depending on the mode of onset, its etiology can be traumatic (impact, collision, sport) or non-traumatic (infections, chronic processes, tumors). Traumatic SCI can be divided into primary and secondary lesion, from the pathophysiological point of view. The primary injury consists in compression or sectioning of the spinal cord (SC) and causes damage to the cells of the central nervous system, blood vessels and the blood-spinal barrier. The secondary degenerative events, which follow the primary insult, result in the progressive cell death of neurons, astrocytes and oligodendrocytes. In this phase, neuroinflammation plays a key role and brings systemic and local consequences, contributing to the progression of the lesion with consequent development of scar tissue and inhibition of axon regenerative processes. Many cells are involved in the inflammatory response following the injury, including macrophages and astrocytes. Macrophages can be divided into: microglia cells (resident in SC) and peripheral macrophages (from the bone marrow); and they can assume two different phenotypes: M1 (pro-inflammatory) and M2 (anti-inflammatory). M1 cells are neurotoxic and are, in fact, responsible for tissue damage after SCI, preventing neuronal regeneration. M2 cells, on the other hand, promote axonal regrowth, remyelination and neuronal regeneration. The regeneration of the SC is fundamentally prevented due to the prevalence of the M1 phenotype: the M2 type response, in fact, is of minor entity and occurs only temporarily. After the trauma, astrocytes become responsive too and show a range of changes in their morphology and phenotype. Reactive astrocytes, close to the injury, may have either harmful or beneficial effects in the central nervous system (CNS) damage, with variable phenotypes called A1 and A2. Astrocytes with A1 phenotype have shown a pro-inflammatory effect, releasing toxic factors for neuronal cells, while A2 astrocytes have a protective effect by upregulating neurotrophic factors to counteract neuronal degeneration and boost regeneration. The only drug approved by the Food and Drug Administration (FDA) for the treatment of SCI, in the acute phase, is methylprednisolone sodium succinate (MPSS), a synthetic corticosteroid, whose clinical use in the acute phase has been the subject of debate for many years. Preclinical data show a neuroprotective role, however problems related to the high-dose route of administration (intravenous) remain, which causes pneumonia, infections and pulmonary embolism, increasing the risk of death. Given the key role of astrocytes in the progression of inflammation in the secondary lesion, some studies have focused on the genetic ablation of the astrocytic population but this had negative consequences for recovery in SCI, like the resulting scar formation. This suggests that the optimal treatment for SCI will need to shift astrocytes towards a phenotype that promotes a better neuronal survival and axonal regeneration instead of reducing the astrocyte-based glial scar. Consequently, there is a pressing need for treatment to target activated astrocytes and their unsafe response after injury to ensure some preservative effect during the progressive damage. Different approaches have been employed to neutralize the negative impacts of activated astrocytes, such as genetic manipulation or pharmacological/biological therapies. However, these approaches suffer some limitations because they are not selective for astrocytes. Several biomaterials have been developed to deliver pharmacological molecules and/or therapeutic cells in order to improve spinal cord recovery and functional outcomes after injury. Polymeric nanoparticles (NPs) offer considerable advantages in compound delivery, controlling their release over time, moreover they can be targeted to specific cells. Different NP systems have been examined for treating the injured spinal cord, but few attempts have been made to target astrocytes, without selective cellular action. There is growing evidence that microglia/macrophages are the first cells that process NPs, limiting other targets achievement. Microglia/macrophages take up foreign materials within a short time, and following this phagocytic mechanism NPs are degraded by the lysosomal system so the therapeutic effect is reduced. More selective nanovector-mediated NPs are needed to reduce phagocytic recognition by microglia/macrophages. In this thesis work, it has been developed and characterized, in vitro and in vivo, a functionalized nanogel-based nanovector, with high colloidal stability, biocompatibility, and capacity of compounds loading and releasing. This nanogel has been functionalized with different moieties for targeting astrocytes, concomitantly limiting microglia/macrophages uptake. In particular, four moieties were investigated, obtained by the combination of three chemical groups conjugated to NG: functionalization with 3-bromopropylamine hydrobromide allowed to obtain a coating of primary amines on the surface of the NG; the other two fractions are constituted by the RhB or Cy5 chromophores, used to visualize the NG in in vitro and in vivo experiments. The NG was investigated for cellular selectivity, uptake, and drug delivery, identifying the most promising one for selective astrocyte treatment in vitro and vivo SCI models. It has been demonstrated its selectivity towards astrocytes, and limited uptake by macrophages when functionalized with both -NH2 and -Cy5 groups. In vitro experiments showed that the internalization was mediated by a clathrin-dependent endocytic pathway. After internalization into the cytoplasm of astrocytes, NG undergoes lysosomal degradation and releases compounds with potential therapeutic efficacy. Subsequently, the NGs, with the four moieties, were injected into the spinal cord of C57BL/6J mice, in order to verify the distribution of the NG and the selective internalization for astrocytes, in vivo. The NG signal, functionalized with the -NH2 -Cy5 coating, was identified in a diffuse manner and co-localized almost exclusively with the astrocytes. Some microglial cells and neurons was positive to the NG signal, but only in the epicenter of the lesion, assuming the altered integrity of the membrane of these cells near the injured area. Finally, the internalization of NG formulations in human iPS cells was tested, discovering that the internalization of NG could be comparable to the absorption seen in murine astrocytes, thus suggesting the potential applicability in human patients. This study suggests a method of drug administration characterized by a very high selectivity in affecting activated astrocytes and therefore modulating the inflammatory response, that characterizes the secondary lesion after SCI. This approach lays the foundations for subsequent drug delivery studies, also in other therapeutic contexts, for example, in the case of neurological diseases or pathologies that have an inflammatory component mediated by astrocytes.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Cremonesi.pdf
solo utenti autorizzati dal 01/04/2021
Descrizione: Testo della tesi
Dimensione
4.7 MB
Formato
Adobe PDF
|
4.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/165414