In the facilities where charged particles are accelerated it is fundamental, from the radiation protection point of view, to assess the secondary radiation fields produced by the interaction of the beam with the structural materials and the irradiated targets, as these particles provide undue dose to the workers and the public. In facilities where hadrontherapy treatments are carried out this topic is even more important since the main contribution to the radiation fields outside the shielding is due to neutrons. In this work the DOMINO ® V5.4 thermal neutron detector has been characterized in order to use it, inside a rem counter, to build an environmental monitoring system. This new rem-meter is intended to operate in a facility where cancer treatments are carried out, such as the CNAO in Pavia, where this work has been carried out. The DOMINO ®V5.4 is a semiconductor detector manufactured at the Kansas State University. It consists of a Silicon substrate with trenches backfilled with LiF that, by increasing the probability of neutron absorption, raises the detection efficiency to 30% (as provided by the manufacturer). The detector was placed inside a rem counter, consisting of a polyethylene sphere with cadmium inserts and a lead shell inside. The response curve vs. energy was obtained by Monte Carlo simulations, in order to check that its trend is consistent with that of the fluence to ambient dose equivalent H^ast(10)/ Phi conversion coefficients, over an extended energy range. This can be considered as a validation of the possibility to use the detector as an active rem counter. The simulations have been performed with the Monte Carlo FLUKA code, which is able to simulate the transport in matter of a wide variety of particles using a very complete set of physical models. A metrological characterization of this device has then been performed, by carrying out some measurements within the CNAO Radioprotection Laboratory. The calibration coefficient of the device was evaluated by exposing the active rem counter to an isotropic Am-Be source. It turned out that the rem counter works properly in the case of low intensity neutron fields. Simulations with FLUKA of this irradiation were also carried out, simulating the source through an ad hoc routine, which results are in good agreement with the measurements. The calibration coefficient was then validated by further measurements, carried out at the Neutron Metrology Laboratory of the Polytechnic University of Milan, and is equal to 0.77 counts/nSv. Further tests were carried out to assess the performance of the active rem counter when exposed to mixed and high-energy fields, such as those in the CNAO treatment rooms. The measurements made by the device in this environment were compared with those of the rem counter "LUPIN" which is designed to have a high linearity in very intense or pulsed fields. The tests were carried out by assessing the response of the device, exposed to secondary neutrons from proton and carbon ion beams, at different energies, and the angles with respect to the direction of the primary beam. It was observed that, placing the rem counter at angles where a very intense radiation field is expected, the active rem counter shows saturation problems unlike the LUPIN, which instead shows no saturation. The device is so deemed to be suitable for environmental monitoring in areas around the CNAO synchrotron, during the normal operation, where a neutron field of comparable intensity to the cosmic background can be expected. For this purpose, part of the thesis project is dedicated to the building of a prototype of a rem counter, designed to be part of an environmental monitoring system. In order to minimize the system size and to make it as user friendly as possible, the rem counter has been integrated with a simple interface, eliminating the need for a connection to its driver board and to its Windows interface software for data acquisition, as provided by the manufacturer. The automation realized consists of the direct connection of the detector to a single board computer Raspberry on which a Python code has been implemented through a graphical interface on a small touch screen, so that it is possible to start and stop the measurement, to read the measured data and save them locally. Then this monitoring system has been tested by using parasite measurement tests around the CNAO experimental room and comparing them with previous measurements, carried out under similar beam conditions. In the end, the instrument based on the DOMINO ® V5.4 detector has been validated as an active rem counter to build an economic and reliable monitoring system in areas around facilities where neutron fields are present.
All’interno delle strutture in cui vengono accelerate particelle cariche risulta fondamentale, dal punto di vista della radioprotezione, valutare i campi di radiazione secondari prodotti dall’interazione del fascio con i materiali strutturali e con i bersagli irraggiati, in quanto tali particelle forniscono una dosa indebita ai lavoratori e al pubblico. In impianti in cui si realizzano trattamenti di adroterapia questo aspetto risulta ancora più cruciale, poiché il campo di neutroni prodotto costituisce il principale contributo al campo di radiazione all’esterno delle schermature. In questo lavoro di tesi è stato caratterizzato il rivelatore di neutroni termici DOMINO ®V5.4, per poterlo utilizzare, all’interno di un rem counter, per realizzare un sistema di monitoraggio ambientale per una facility in cui si effettuano trattamenti oncologici, come il CNAO (Centro Nazionale di Adroterapia Oncologica) di Pavia, ove questo lavoro è stato realizzato. Il DOMINO ® V5.4 è un rivelatore a semiconduttore realizzato presso l’Università di Stato del Kansas. È costituito da un substrato di Silicio nel quale vengono realizzati dei canali riempiti da LiF che, incrementando la probabilità di assorbimento di neutroni, consentono il raggiungimento di un’efficienza di rivelazione del 30%, come valutata dalla casa produttrice. In questo progetto di tesi il rivelatore è stato inserito all’interno di un rem counter, costituito da una sfera di polietilene al cui interno sono presenti inserti in cadmio e un guscio in piombo. È stata costruita la curva di risposta in funzione dell’energia, tramite simulazioni Monte Carlo, ed è stato possibile valutare che l’andamento di tale curva riproduce, per un intervallo energetico esteso, la curva dei coefficienti di conversione fluenza–equivalente di dose ambientale H^ast(10)/ Phi. È stato quindi validato l’utilizzo del rivelatore, formato dal diodo e moderatore, come un rem counter attivo. Le simulazioni sono state realizzate utilizzando il codice Monte Carlo FLUKA, che permette di simulare il trasporto nella materia di una grande varietà di particelle utilizzando un set di modelli fisici particolarmente completo. Successivamente è stata effettuata una caratterizzazione metrologica di questo dispositivo, presso il Laboratorio di Radioprotezione del CNAO. È stato possibile valutare il coefficiente di taratura del dispositivo, esponendo il rem counter attivo ad una sorgente isotropa di Am-Be, presente all’interno della struttura. È stato quindi possibile valutare che il rem counter lavora correttamente in caso di campi di neutroni molto poco intensi. Sono state inoltre effettuate simulazioni di questo irraggiamento con FLUKA, simulando la sorgente tramite una routine ad hoc, i cui risultati sono in buon accordo con quelli ottenuti dalle misure. Sono state poi condotte ulteriori prove presso il Laboratorio di Metrologia Neutronica del Politecnico di Milano, per confermare il coefficiente di taratura, risultato pari a 0.77 conteggi/nSv. Sono stati poi realizzati ulteriori test per valutare il funzionamento del rem counter attivo quando viene esposto a campi misti e di alta energia, come quelli presenti all’interno delle sale di trattamento del CNAO. Le misure effettuate dal dispositivo in questo ambiente sono state confrontate con quelle di un rem counter “LUPIN”, progettato per aver un’elevata linearità di risposta e quindi per misurare in modo affidabile campi molto intensi o campi pulsati. Le prove sono state realizzate valutando la risposta del dispositivo, esposto a radiazione secondaria prodotta dall’impatto di fasci di protoni e di ioni carbonio su un bersaglio di rame a diverse energie, e valutando come detta risposta varia in funzione dell’angolo rispetto alla direzione di incidenza del fascio. È stato poi osservato che, posizionando il rem counter in corrispondenza di angoli per i quali si aspetta un campo di radiazione molto intenso, il rem counter attivo tende ad avere problemi di saturazione a differenza del LUPIN. In base all’esito di queste misure, il dispositivo è stato ritenuto valido per realizzare delle misure di monitoraggio ambientale in aree attorno al centro in cui si aspetta di trovare, durante il normale funzionamento della facility, un campo neutronico di intensità comparabile al fondo cosmico. A tal scopo, una parte del progetto di tesi è stata dedicata alla realizzazione di un prototipo di rem counter, pensato per essere parte di un sistema di monitoraggio ambientale. Per realizzare un sistema dal minimo ingombro, dall’uso agevole sul campo, il rem counter è stato integrato con una semplice interfaccia utente, eliminando la necessità di un collegamento alla relativa driver board e al software di lettura per Windows, forniti dalla casa produttrice, per l’acquisizione dei dati. L’automatizzazione realizzata consiste nel collegamento diretto del rivelatore ad un microcomputer Raspberry, sul quale è stato implementato un codice Python tramite la cui interfaccia grafica su un touch screen è possibile gestire la misura, leggere i dati misurati e salvarli in locale. Questo sistema di monitoraggio è stato poi testato tramite misure in parassita attorno alla sala sperimentale del CNAO ed effettuando un confronto con misure realizzate precedentemente in condizioni simili. Si è quindi concluso che il rivelatore DOMINO ® V5.4 può essere utilizzato come un rem counter attivo per realizzare un sistema di monitoraggio economico ed affidabile in aree attorno a facility in cui sono presenti campi di neutroni.
Caratterizzazione di un rem counter attivo basato su un diodo microstrutturato
Lamorte, Simona
2019/2020
Abstract
In the facilities where charged particles are accelerated it is fundamental, from the radiation protection point of view, to assess the secondary radiation fields produced by the interaction of the beam with the structural materials and the irradiated targets, as these particles provide undue dose to the workers and the public. In facilities where hadrontherapy treatments are carried out this topic is even more important since the main contribution to the radiation fields outside the shielding is due to neutrons. In this work the DOMINO ® V5.4 thermal neutron detector has been characterized in order to use it, inside a rem counter, to build an environmental monitoring system. This new rem-meter is intended to operate in a facility where cancer treatments are carried out, such as the CNAO in Pavia, where this work has been carried out. The DOMINO ®V5.4 is a semiconductor detector manufactured at the Kansas State University. It consists of a Silicon substrate with trenches backfilled with LiF that, by increasing the probability of neutron absorption, raises the detection efficiency to 30% (as provided by the manufacturer). The detector was placed inside a rem counter, consisting of a polyethylene sphere with cadmium inserts and a lead shell inside. The response curve vs. energy was obtained by Monte Carlo simulations, in order to check that its trend is consistent with that of the fluence to ambient dose equivalent H^ast(10)/ Phi conversion coefficients, over an extended energy range. This can be considered as a validation of the possibility to use the detector as an active rem counter. The simulations have been performed with the Monte Carlo FLUKA code, which is able to simulate the transport in matter of a wide variety of particles using a very complete set of physical models. A metrological characterization of this device has then been performed, by carrying out some measurements within the CNAO Radioprotection Laboratory. The calibration coefficient of the device was evaluated by exposing the active rem counter to an isotropic Am-Be source. It turned out that the rem counter works properly in the case of low intensity neutron fields. Simulations with FLUKA of this irradiation were also carried out, simulating the source through an ad hoc routine, which results are in good agreement with the measurements. The calibration coefficient was then validated by further measurements, carried out at the Neutron Metrology Laboratory of the Polytechnic University of Milan, and is equal to 0.77 counts/nSv. Further tests were carried out to assess the performance of the active rem counter when exposed to mixed and high-energy fields, such as those in the CNAO treatment rooms. The measurements made by the device in this environment were compared with those of the rem counter "LUPIN" which is designed to have a high linearity in very intense or pulsed fields. The tests were carried out by assessing the response of the device, exposed to secondary neutrons from proton and carbon ion beams, at different energies, and the angles with respect to the direction of the primary beam. It was observed that, placing the rem counter at angles where a very intense radiation field is expected, the active rem counter shows saturation problems unlike the LUPIN, which instead shows no saturation. The device is so deemed to be suitable for environmental monitoring in areas around the CNAO synchrotron, during the normal operation, where a neutron field of comparable intensity to the cosmic background can be expected. For this purpose, part of the thesis project is dedicated to the building of a prototype of a rem counter, designed to be part of an environmental monitoring system. In order to minimize the system size and to make it as user friendly as possible, the rem counter has been integrated with a simple interface, eliminating the need for a connection to its driver board and to its Windows interface software for data acquisition, as provided by the manufacturer. The automation realized consists of the direct connection of the detector to a single board computer Raspberry on which a Python code has been implemented through a graphical interface on a small touch screen, so that it is possible to start and stop the measurement, to read the measured data and save them locally. Then this monitoring system has been tested by using parasite measurement tests around the CNAO experimental room and comparing them with previous measurements, carried out under similar beam conditions. In the end, the instrument based on the DOMINO ® V5.4 detector has been validated as an active rem counter to build an economic and reliable monitoring system in areas around facilities where neutron fields are present.File | Dimensione | Formato | |
---|---|---|---|
2020_07_Lamorte.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/165627