The classical body-fitted mesh approach is a consolidated tool for domain discretisation within the framework of computational fluid dynamics; however, it may suffer from the generation of a largely heavy mesh, possibly slowing down the simulation and the associated computational time. The immersed boundary method (IBM) is a useful alternative that allows to use simple Cartesian orthogonal grids, avoiding complex mesh generation by substituting the body to be modeled with boundary forces that mimic its presence. These forces are reconstructed by interpolation of the variables' values in the neighbourhood of the boundary itself. Such method hence saves time in the mesh generation step, as the grid is relatively simple and fast to create, and consequently the computational time appears to be lower than the one of an equivalent body-fitted case, since, as a matter of fact, the mesh is much lighter. However, it is shown that, on equally-sized meshes between the two methods, the algorithm implemented in OpenFOAM for the immersed boundary method is slower than the body-fitted approach on the single cell, and thus it can be still improved and sped up. The goal of this work is to first prove the equivalence of IBM with respect to the body-fitted mesh approach, via benchmark cases that range from laminar steady and unsteady simulations to turbulent ones, and then applying the method to a true 3D wheel model, investigating applicability and defects. It is found that the IBM works well with laminar stationary cases, suffers from spurious oscillations when a dynamic simulation is performed, and its wall functions are able to just correctly predict the drag but lack in the computation of forces in normal direction.
L'approccio body-fitted è uno strumento ormai consolidato per la discretizzazione del dominio nell'ambito della fluidodinamica computazionale; tuttavia, può risultare condizionato dalla generazione di una mesh troppo pesante, che può potentialmente rallentare la simulazione e il relativo tempo computazionale. Il metodo dei contorni immersi (in inglese, immersed boundary method, o IBM) è una valida alternativa che permette di utilizzare semplici griglie ortogonali Cartesiane, evitando la generazione di mesh complesse sostituendo il corpo da modellare con delle forze al contorno che ne riproducono la presenza. Queste forze sono ricostruite per interpolazione dei valori delle variabili nell'intorno della frontiera stessa. Di conseguenza, tale metodo permette di risparmiare tempo nella creazione della mesh, in quanto la griglia è relativamente semplice e veloce da creare, e conseguentemente anche il tempo computazionale appare minore rispetto ad un equivalente caso body-fitted, dal momento che, per l'appunto, la mesh risulta essere più leggera. Tuttavia, si mostra che, a parità di mesh tra i due metodi, l'algoritmo implementato in OpenFOAM per il metodo dei contorni immersi è più lento del body-fitted sulla singola cella, e può essere quindi ancora maggiormente velocizzato. L'obiettivo di questo lavoro è quello di provare inizialmente l'equivalenza del metodo rispetto al classico body-fitted, tramite casi base che spaziano da simulazioni laminari, stazionarie e non, fino a casi turbolenti, e quindi applicarlo ad un caso 3D di un modello di ruota vera, andando ad investigarne applicabilità e difetti. Si trova che il metodo IBM funziona bene con simulazioni statiche laminari, soffre di oscillazioni di pressione spurie con simulazioni dinamiche, e le sue wall functions sono in grado di ricostruire correttamente le forze in direzione tangenziale ma riscontrano problemi per quelle in direzione normale.
Immersed boundary method in OpenFOAM : numerical validation and application to wheel geometries
Ballatore, Alessandro
2019/2020
Abstract
The classical body-fitted mesh approach is a consolidated tool for domain discretisation within the framework of computational fluid dynamics; however, it may suffer from the generation of a largely heavy mesh, possibly slowing down the simulation and the associated computational time. The immersed boundary method (IBM) is a useful alternative that allows to use simple Cartesian orthogonal grids, avoiding complex mesh generation by substituting the body to be modeled with boundary forces that mimic its presence. These forces are reconstructed by interpolation of the variables' values in the neighbourhood of the boundary itself. Such method hence saves time in the mesh generation step, as the grid is relatively simple and fast to create, and consequently the computational time appears to be lower than the one of an equivalent body-fitted case, since, as a matter of fact, the mesh is much lighter. However, it is shown that, on equally-sized meshes between the two methods, the algorithm implemented in OpenFOAM for the immersed boundary method is slower than the body-fitted approach on the single cell, and thus it can be still improved and sped up. The goal of this work is to first prove the equivalence of IBM with respect to the body-fitted mesh approach, via benchmark cases that range from laminar steady and unsteady simulations to turbulent ones, and then applying the method to a true 3D wheel model, investigating applicability and defects. It is found that the IBM works well with laminar stationary cases, suffers from spurious oscillations when a dynamic simulation is performed, and its wall functions are able to just correctly predict the drag but lack in the computation of forces in normal direction.File | Dimensione | Formato | |
---|---|---|---|
Tesi-4.pdf
accessibile in internet per tutti
Descrizione: Tesi di Laurea Magistrale
Dimensione
12.97 MB
Formato
Adobe PDF
|
12.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166387