The work of this thesis focuses on the design and validation of software that is able to use the temperature values measured by the sensors as feedback to regulate the operating parameters of the laser in real-time. During thermal therapy, the main goal is to achieve complete tumor removal while preserving the surrounding healthy tissue. The amount of tissue that is damaged during Laser Ablation (LA) depends on the temperature distribution and treatment time exposure. In turn, the temperature distribution in the tissue is influenced by the operating parameters of the laser device (such as the power and diameter of the laser beam). The temperature feedback control system is able to influence the outcomes of laser ablation therapy. This thesis is divided into five parts. In the first part, thermal ablation therapies are introduced with particular attention to laser ablation thermal treatment. The state of the art regarding the control systems during this treatment is then analyzed. The second part describes the control system used in the experimentation phase. The control system is composed of: a laser source, a temperature monitoring system, and a control logic; this last has been entirely developed during this thesis work. Fiber Bragg Grating (FBG) sensors have been used to acquire temperatures in real-time and, to the best of our knowledge, they have never been used for laser ablation controlling. The third part focuses on the implementation and validation of temperature feedback controls. Three different types of control have been implemented, each type of control is based on the On-Off control logic. In On-Off control, the laser source is turned off when the actual temperature exceeds the threshold temperature, while the laser source is turned on when the actual temperature is below the same threshold. To accurately reconstruct temperature distribution, an alignment code is developed and added to the On-Off control when more than one FBG sensors are required. The first type of control, called 1-D control, uses a single fiber that is capable to acquire the temperature in 40 points along the fiber sensor. The control condition is activated by comparing only the maximum measured temperature with the threshold temperature, set by the user. 1-D control aims to make laser ablation take place at a constant temperature to avoid tissue carbonization. This solution is interesting from the clinical point-of-view, because it is aimed at reducing the invasiveness of the procedure, thanks to the introduction of only one additional fiber for sensing and control. The second type of control, the Zone control, uses 3 fibers, each of which acquires the temperature in 25 points along the sensor. Using 3 fibers it is possible to reconstruct the 2-D temperature distribution on the tissue during LA. Zone control verifies that the actual temperature on a circumference is below the threshold temperature, both the radius and the temperature are set by the user. The Zone control aims to protect the surrounding healthy tissues, and provides an estimation of the induced thermal damage. The third type of control, the 3-D control, uses 4 fibers, each of which acquires the temperature in 40 points along the sensor. In this type of control, the fibers are inserted inside the phantom, in this way is possible to define 40 equally spaced temperature planes, each of which contains 4 temperatures. The 3-D control verifies that the maximum temperature read on a single temperature plane is below the threshold value. The goal of 3-D control is to safeguard healthy tissues. The fourth part of the thesis work focuses on numerical simulation, aimed at validating the developed control strategies. The COMSOL Multiphysics software was used to recreate the temperature distribution and thermal damage volume of the tissue during the laser ablation treatment. Two types of models have been built in accordance with the laser ablation modalities which were previously experimentally employed. The first model simulates the contactless laser ablation, while the second one simulates interstitial laser ablation. During the simulations, the mechanical, thermal and optical properties of the human liver were used. Both the contactless and the interstitial laser ablation simulations provide solid results in containing the extent of the thermal damage by controlling the temperature during the LA treatments. In the last part of this study, the results of simulations are compared with the experimental results. The results obtained in this thesis show that the On-Off control is capable of influencing the temperature distribution during laser ablation. The On-Off control was found to be particularly performant during 1-D control both in the numerical part and in the experimental part since the temperature variations around the threshold value remained contained. For Zone control, the aim of keeping the temperature on the boundary constant to prevent the damage on the surrounding healthy tissue was achieved. For 3-D control, the On-Off control was efficient in controlling the temperature profiles and, therefore, also the extent of the thermal damage during the experimental phase. In the simulation phase, the remarkable result in containing the thermal damage was reached, even if the temperature fluctuations around the target temperature were present. To further improve the 3-D control, alternative control strategies will be tested in the future based on the use of a radial diffuser laser applicator with a built-in temperature sensor.
Il lavoro di questa tesi si concentra sul progettare e validare un software che sia in grado di regolare i parametri di funzionamento del laser in real-time in base ai valore di temperatura misurati dai sensori. Durante la terapia termica, l’obiettivo principale è quello di ottenere la completa rimozione del tumore preservando il tessuto sano circostante. La quantità di tessuto che viene danneggiato durante l’ablazione laser dipende sia dalla distribuzione della temperatura sia dal tempo di ablazione. A sua volta, la distribuzione di temperatura all’interno del tessuto è influenzata dai parametri operativi del laser (come la potenza e il diametro del fascio laser). Il controllo retroazionato in temperatura è capace è in grado di influenzare gli esiti della terapia di ablazione laser. Questa tesi è divisa in cinque parti. Nella prima parte, le terapie termiche di ablazione sono introdotte con una particolare attenzione al trattamento termico di ablazione laser. Inoltre viene approfondito lo stato dell’arte riguardante i sistemi di controllo durante questo trattamento. La seconda parte descrive i sistema di controllo utilizzato durante la fase di sperimentazione. Il sistema di controllo è composto da: una sorgente laser, un sistema di monitoraggio di temperatura e una logica di controllo, che è stata interamente sviluppata durante questo lavoro di tesi. I sensori Fiber Bragg Grating (FBG) sono stati utilizzati per acquisire le temperatura in tempo reale, e al meglio della nostra conoscenza, non sono mai stati utilizzati per controllare l’ablazione laser. La terza parte si concentra sull’implementazione e la validazione del sistema di controllo retroazionato in temperatura. Tre tipi differenti di controllo sono stati implementati, ognuno di essi è basato sulla logica On-Off. Nella logica On-Off, la sorgente laser viene spenta quando la temperatura reale supera la soglia di temperatura, mentre la sorgente laser viene accesa quando la temperatura reale si trova al di sotto della stessa soglia. Per ricostruire una distribuzione di temperatura che sia fedele a quella reale, un codice di allineamento dei profili è stato sviluppato e aggiunto alla logica On-Off nel cado in cui più di un sensore FBG è richiesto. Il primo tipo di controllo, chiamato 1-D control, utilizza una sola fibra che è capace di acquisire i profili di temperatura di 40 punti disposti lungo la fibra. La condizione di controllo viene attivata confrontando solamente il massimo valore di temperatura misurato con la temperatura di soglia, che viene fissata dall’utente. Lo scopo del 1-D control è quello di fare avvenire l’ablazione laser a temperatura costante in modo da evitare la carbonizzazione del tessuto. Questa soluzione è interessante dal punto di vista clinico, poiché è mirata a ridurre invasività della procedura grazie all’introduzione di una sola fibra aggiuntiva per il rilevamento e i controllo. Il secondo tipo di controllo, il Zone control, utilizza 3 fibre, ognuna delle quali acquisisce la temperatura in 25 punti disposti lungo il sensore. Utilizzando 3 fibre è possibile ricostruire la distribuzione della temperatura in 2-D sul tessuto durante l’ablazione laser. Il Zone control verifica che la temperatura reale su una circonferenza sia al di sotto della temperatura di soglia, e sia il raggio che la circonferenza sono fissate dall’utente. L’obiettivo del Zone control, è quello di proteggere i tessuti sani circostanti e fornisce una stima del danno termico indotto. Il terzo tipo di controllo, il 3-D control, utilizza 4 fibre, ognuna delle quali acquisisce la temperature in 40 punti disposti lungo la fibra. In questo tipo di controllo, le fibre vengono inserite all’interno del tessuto, in questo modo è possibile definire 40 piani di temperatura equi spaziati, ognuno dei piani contiene 4 temperature. Il 3-D control verifica che la massima temperatura letta su un solo piano di temperatura sia al di sotto del valore di soglia. Lo scopo del 3-D control è quello di salvaguardare i tessuti sani. La quarta parte di questo lavoro di tesi si focalizza sulla simulazione numerica, il cui scopo è quello di validare le strategie di controllo sviluppate. Il software COMSOL Multiphysics è stato adoperato per ricreare la distribuzione delle temperature e il volume di tessuto danneggiato termicamente avuti durante il trattamento di ablazione laser. Due tipi di modelli sono stati costruiti in accordo con le modalità di ablazione laser che sono state precedentemente utilizzate durante gli esperimenti. Il primo modello simula l’ablazione laser senza contatto mentre il secondo simula l’ablazione laser interstiziale. Durante la simulazione le proprietà meccaniche, termiche e ottiche del fegato umano sono state utilizzate. Entrambe le simulazioni forniscono validi risultati nel contenere l’estensione del danno termico controllando la temperatura durante il trattamento di ablazione laser. Nell’ultima parte della tesi, i risultati della simulazione vengono confrontati con i risultati ottenuti dagli esperimenti. I risultati ottenuti in questa tesi mostrano come la logica On-Off sia capace di influenzare la distribuzione di temperatura durante l’ablazione laser. La logica On-Off è stata particolarmente performante durante la 1-D control sia nella parte numerica sia nella parte sperimentale poiché le variazioni di temperatura intorno al valore di soglia sono rimaste contenute. Per il Zone control , lo scopo di tenere la temperatura costante sui bordi per prevenire il danno termico sul tessuto sano circostante è stato raggiunto. Per il 3-D control, la logica On-Off è stata efficiente nel controllare i profili di temperatura e pertanto l’estensione del danno termico durante la fase sperimentale. Nella fase di simulazione, ottimi risultati nel contenere il danno termico sono stati ottenuti, anche se la oscillazioni di temperatura intorno alla temperatura si soglia erano presenti. In futuro si prevede di utilizzare le strategie implementate in questo lavoro di tesi durante ablazione laser effettuata con applicatore laser con diffusore radiale e con sensore di temperatura incorporato, in modo da avere rispettivamente una distribuzione del calore uniforme e la possibilità di controllare la temperatura massima.
Development of a temperature-based feedback control system for the laser ablation treatments
Orrico, Annalisa
2019/2020
Abstract
The work of this thesis focuses on the design and validation of software that is able to use the temperature values measured by the sensors as feedback to regulate the operating parameters of the laser in real-time. During thermal therapy, the main goal is to achieve complete tumor removal while preserving the surrounding healthy tissue. The amount of tissue that is damaged during Laser Ablation (LA) depends on the temperature distribution and treatment time exposure. In turn, the temperature distribution in the tissue is influenced by the operating parameters of the laser device (such as the power and diameter of the laser beam). The temperature feedback control system is able to influence the outcomes of laser ablation therapy. This thesis is divided into five parts. In the first part, thermal ablation therapies are introduced with particular attention to laser ablation thermal treatment. The state of the art regarding the control systems during this treatment is then analyzed. The second part describes the control system used in the experimentation phase. The control system is composed of: a laser source, a temperature monitoring system, and a control logic; this last has been entirely developed during this thesis work. Fiber Bragg Grating (FBG) sensors have been used to acquire temperatures in real-time and, to the best of our knowledge, they have never been used for laser ablation controlling. The third part focuses on the implementation and validation of temperature feedback controls. Three different types of control have been implemented, each type of control is based on the On-Off control logic. In On-Off control, the laser source is turned off when the actual temperature exceeds the threshold temperature, while the laser source is turned on when the actual temperature is below the same threshold. To accurately reconstruct temperature distribution, an alignment code is developed and added to the On-Off control when more than one FBG sensors are required. The first type of control, called 1-D control, uses a single fiber that is capable to acquire the temperature in 40 points along the fiber sensor. The control condition is activated by comparing only the maximum measured temperature with the threshold temperature, set by the user. 1-D control aims to make laser ablation take place at a constant temperature to avoid tissue carbonization. This solution is interesting from the clinical point-of-view, because it is aimed at reducing the invasiveness of the procedure, thanks to the introduction of only one additional fiber for sensing and control. The second type of control, the Zone control, uses 3 fibers, each of which acquires the temperature in 25 points along the sensor. Using 3 fibers it is possible to reconstruct the 2-D temperature distribution on the tissue during LA. Zone control verifies that the actual temperature on a circumference is below the threshold temperature, both the radius and the temperature are set by the user. The Zone control aims to protect the surrounding healthy tissues, and provides an estimation of the induced thermal damage. The third type of control, the 3-D control, uses 4 fibers, each of which acquires the temperature in 40 points along the sensor. In this type of control, the fibers are inserted inside the phantom, in this way is possible to define 40 equally spaced temperature planes, each of which contains 4 temperatures. The 3-D control verifies that the maximum temperature read on a single temperature plane is below the threshold value. The goal of 3-D control is to safeguard healthy tissues. The fourth part of the thesis work focuses on numerical simulation, aimed at validating the developed control strategies. The COMSOL Multiphysics software was used to recreate the temperature distribution and thermal damage volume of the tissue during the laser ablation treatment. Two types of models have been built in accordance with the laser ablation modalities which were previously experimentally employed. The first model simulates the contactless laser ablation, while the second one simulates interstitial laser ablation. During the simulations, the mechanical, thermal and optical properties of the human liver were used. Both the contactless and the interstitial laser ablation simulations provide solid results in containing the extent of the thermal damage by controlling the temperature during the LA treatments. In the last part of this study, the results of simulations are compared with the experimental results. The results obtained in this thesis show that the On-Off control is capable of influencing the temperature distribution during laser ablation. The On-Off control was found to be particularly performant during 1-D control both in the numerical part and in the experimental part since the temperature variations around the threshold value remained contained. For Zone control, the aim of keeping the temperature on the boundary constant to prevent the damage on the surrounding healthy tissue was achieved. For 3-D control, the On-Off control was efficient in controlling the temperature profiles and, therefore, also the extent of the thermal damage during the experimental phase. In the simulation phase, the remarkable result in containing the thermal damage was reached, even if the temperature fluctuations around the target temperature were present. To further improve the 3-D control, alternative control strategies will be tested in the future based on the use of a radial diffuser laser applicator with a built-in temperature sensor.File | Dimensione | Formato | |
---|---|---|---|
2020_10_Orrico.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
9.83 MB
Formato
Adobe PDF
|
9.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166437