The term "energetic efficiency" has become one of the most important in the automotive world, especially with the spread of electric vehicles. For this reason, one of the possible direction of improvement is the reduction of the aerodynamic drag. Speaking of the underbody of a ground vehicle, it has a huge influence on the drag and the interactions between the wheels and the car body influence both the external flux and the under flow of a car. Hence, tyre manufacturer like Pirelli Tyre S.p.a. are developing high efficiency tyre pattern, by working on the geometric parameters like the shoulder radius or number and position of the grooves. In this context, understanding the interactions between different patterns and the flow is of primary importance, as the modelling in the case of a CFD analysis. Several studies have been already conducted, both in wind tunnels and using Computational Fluid Dynamics software. However, due to the complexity of the flow field around a rotating wheel, the results are not always in accordance to each other. Hence, in this work several approaches were tested on two different tyre patterns, created on purpose for this analysis, both in steady and unsteady conditions, in order to understand which is able to best combine precision and computational effort. The wheels were tested in a free stream flux, while rotating in mid--air to avoid any kind of complications due to the contact patch. Moreover, in this way the Sliding Mesh approach was exploitable, and it was taken as a reference result to compare the other methods. The equation adopted were the RANS, since they are the most used by the industrial world regarding the CFD analysis. To execute the whole simulation, starting from the mesh creation until the calculation of the equations, the software used was OpenFOAM V6. The results highlight that the computational cost of the steady simulations is much lower respect to the unsteady ones, while the SM approach doubles the hours used for the latter. Moreover, the steady Moving Reference Frame (MRF) approach is able to obtain good results with the lowest computational cost.
Nel moderno mondo automobilistico l'efficienza energetica, sempre più ricercata anche a seguito della diffusione dei veicoli elettrici, è divenuta uno dei focus principali. Ridurre la resistenza aerodinamica è sicuramente una delle possibilitá più interessanti per migliorare le prestazioni e ridurre i consumi. In particolare, l'interazione tra ruote e carrozzeria influenza sia il flusso esterno, che quello inferiore al corpo vettura. Per questi motivi, i produttori di pneumatici quali Pirelli Tyre S.p.a. stanno sviluppando battistrada ad alta efficienza, anche aerodinamica, agendo su parametri geometrici quali la spalla dello pneumatico e le scanalature. Da qui sorge l'esigenza di analizzare e comprendere l'interazione tra il flusso dell'aria e differenti battistrada, ed altrettanto importante diventa la sua modellazione nel caso di un'analisi CFD. Diversi studi sono già stati condotti a riguardo, sia sperimentali che numerici, ma vista la complessità del flusso nel caso di uno pneumatico completo, non tutti i risultati sono concordi tra loro. Questa tesi analizza in maniera approfondita, tramite CFD, diversi modelli di calcolo, testando due differenti tipi di battistrada creati appositamente per questo studio. Le simulazioni svolte prevedono la ruota posta in rotazione e sollevata da terra, per rendere possibile l'utilizzo della Sliding Mesh (SM), ritenuto ad oggi il metodo più fedele per riprodurre la rotazione di un oggetto. Le simulazioni svolte, stazionarie e non, sono quindi state paragonate all'approccio SM. Lo scopo di questo lavoro è comprendere quale modello riesca a percepire meglio le differenze, in termini di coefficienti aerodinamici, tra i diversi battistrada considerando anche il fattore chiave di costo computazionale. Le equazioni impiegate per l'analisi sono le RANS, estremamente diffuse nelle simulazioni a scopo industriale, ed il software utilizzato è OpenFOAM V6. Dai risultati emerge come le simulazioni stazionarie siano molto meno dispendiose dal punto di vista computazionale rispetto a quelle instazionarie e come il modello Moving Reference Frame (MRF) stazionario riesca ad ottenere buoni risultati con il minor costo possibile.
Aerodynamics of rotating wheels: analysis of different modelling approaches
PANUNZIO, ENRICO
2018/2019
Abstract
The term "energetic efficiency" has become one of the most important in the automotive world, especially with the spread of electric vehicles. For this reason, one of the possible direction of improvement is the reduction of the aerodynamic drag. Speaking of the underbody of a ground vehicle, it has a huge influence on the drag and the interactions between the wheels and the car body influence both the external flux and the under flow of a car. Hence, tyre manufacturer like Pirelli Tyre S.p.a. are developing high efficiency tyre pattern, by working on the geometric parameters like the shoulder radius or number and position of the grooves. In this context, understanding the interactions between different patterns and the flow is of primary importance, as the modelling in the case of a CFD analysis. Several studies have been already conducted, both in wind tunnels and using Computational Fluid Dynamics software. However, due to the complexity of the flow field around a rotating wheel, the results are not always in accordance to each other. Hence, in this work several approaches were tested on two different tyre patterns, created on purpose for this analysis, both in steady and unsteady conditions, in order to understand which is able to best combine precision and computational effort. The wheels were tested in a free stream flux, while rotating in mid--air to avoid any kind of complications due to the contact patch. Moreover, in this way the Sliding Mesh approach was exploitable, and it was taken as a reference result to compare the other methods. The equation adopted were the RANS, since they are the most used by the industrial world regarding the CFD analysis. To execute the whole simulation, starting from the mesh creation until the calculation of the equations, the software used was OpenFOAM V6. The results highlight that the computational cost of the steady simulations is much lower respect to the unsteady ones, while the SM approach doubles the hours used for the latter. Moreover, the steady Moving Reference Frame (MRF) approach is able to obtain good results with the lowest computational cost.File | Dimensione | Formato | |
---|---|---|---|
2020_04_Panunzio.pdf
accessibile in internet per tutti
Descrizione: Tesi di Laurea Magistrale
Dimensione
25.66 MB
Formato
Adobe PDF
|
25.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166568