There is a relatively long history in the use of porous hydroxyapatite (HAp) in bone repair: initially, this material was used only for the repair of small bone defects; however, larger ones were also considered with success. In the last years, synthetic HAp scaffolds are mainly applied in non-load bearing locations, but are also used in benign bone tumors treatment, in ocular implants, for maxilla-facial surgery, including cranial reconstruction, and for spinal fusion. HAp has massive potential for bone grafting and tissue engineering, thanks to its chemical similarity to the mineral component of bone and its biocompatibility. HAp’s bioactivity lies in its ability to form an additional layer of calcium phosphate on its surface while the bulk of the material is unchanged. The porosity of the structure invites ingrowth into the implant, leading to a more securely fixed and integrated repair. Cells and nutrients are able to pass throughout the scaffold structure in which they have the availability to attach and proliferate. Bijels (Bicontinuous Interfacially Jammed Emulsions gels) can be used in this context as templates for cell delivery and tissue scaffolds. Bijels are non-equilibrium structures formed by two non-mixable liquids and stabilized by a jammed layer of solid nanoparticles at their interface. The monomer used in this thesis work is ε-caprolactone, which is able to entrap a water-based HAp dispersion into its matrix during its polymerization. This way, it was possible to create a porous bicontinuous structure with hydroxyapatite nanoparticles at the interface. The obtained product was analysed to investigate its morphology and internal structure. Three different production methods have been tested. Thermal and chemical-physical stability tests were performed in order to understand which method and thermal condition was the best one for the bijel production. Finally, release tests were performed. Since bijels are constituted by both an aqueous and an organic phase, they may be able to load both hydrophilic and lipophilic drugs at the same time, simultaneously releasing them in a controlled way. To this purpose, different drug mimetics have been used, both hydrophobic (pyrene, fluorescein isothiocyanate isomer I) and hydrophilic (fluorescein, rhodamine B, fluorescein isothiocyanate-dextran 70000). The results were calculated in terms of released percentage with respect to the loaded amount of fluorophore in order to test the ability of the product to control the release of both lipophilic and hydrophilic drug mimetics.
L’utilizzo dell'idrossiapatite (HAp) nel campo della ricostruzione ossea ha una storia relativamente lunga: inizialmente il materiale era usato solo per la riparazione di piccoli difetti, successivamente venne estesa anche a quelli più grandi. L’idrossiapatite sintetica viene ora utilizzata come “impalcatura” per la ricostruzione ossea principalmente in posizioni non portanti, ma può essere anche utilizzata per il trattamento di tumori ossei benigni, negli impianti oculari, per la chirurgia maxillo-facciale, inclusa la ricostruzione cranica, e per la fusione spinale. L’idrossiapatite trova il suo massimo potenziale nell'innesto osseo e nell'ingegneria tissutale a causa della sua somiglianza chimica con la componente minerale dell'osso e della sua biocompatibilità. La bioattività di questa particella risiede nella capacità di formare uno strato aggiuntivo di fosfato di calcio sulla propria superficie. La porosità della struttura favorisce la crescita dell’osso all'interno dell'impianto, portando ad una riparazione più sicura e stabile. Le cellule e le sostanze nutritive sono in grado di passare attraverso la struttura di questa impalcatura nella quale trovano spazio sufficiente per legarsi e proliferare. I bijels (Bicontinuous Interfacially Jammed Emulsions gels) possono essere utilizzati in questo contesto come modelli per il trasporto cellulare e come impalcature per la ricostruzione dei tessuti. I bijels sono strutture formate da due liquidi immiscibili stabilizzate da uno strato di nanoparticelle solide alla loro interfaccia. Il monomero utilizzato in questa tesi è l'ε-caprolattone che, durante la polimerizzazione, è in grado di intrappolare all’interno della propria matrice una dispersione acquosa di HAp. In questo modo, è stato possibile creare una struttura bicontinua porosa con nanoparticelle di idrossiapatite all'interfaccia. Il prodotto ottenuto è stato analizzato per indagarne la morfologia e la struttura interna. Sono stati testati tre diversi metodi di produzione ed eseguite prove distabilità termica e chimico-fisica per capire quale metodo e condizione termica fosse la migliore per la loro produzione. Infine, sono stati eseguiti dei test di rilascio. Poiché i bijels sono costituiti sia da una fase acquosa che da una organica, è possibile caricare al loro interno farmaci idrofili e lipofili, rilasciandoli contemporaneamente in modo controllato. A tale scopo sono stati utilizzati diversi fluorofori, sia idrofobici (pirene, fluoresceina isotiocianato isomero I) che idrofili (fluoresceina, rodamina B, fluoresceina isotiocianato-destrano 70000). I risultati sono stati calcolati in termini di percentuale rilasciata rispetto alla quantità di fluoroforo caricata al fine di valutare la capacità del prodotto di controllare il rilascio di farmaci.
Organic-inorganic bijel-like structures for bone tissue engineering
COSTE, ELENA
2019/2020
Abstract
There is a relatively long history in the use of porous hydroxyapatite (HAp) in bone repair: initially, this material was used only for the repair of small bone defects; however, larger ones were also considered with success. In the last years, synthetic HAp scaffolds are mainly applied in non-load bearing locations, but are also used in benign bone tumors treatment, in ocular implants, for maxilla-facial surgery, including cranial reconstruction, and for spinal fusion. HAp has massive potential for bone grafting and tissue engineering, thanks to its chemical similarity to the mineral component of bone and its biocompatibility. HAp’s bioactivity lies in its ability to form an additional layer of calcium phosphate on its surface while the bulk of the material is unchanged. The porosity of the structure invites ingrowth into the implant, leading to a more securely fixed and integrated repair. Cells and nutrients are able to pass throughout the scaffold structure in which they have the availability to attach and proliferate. Bijels (Bicontinuous Interfacially Jammed Emulsions gels) can be used in this context as templates for cell delivery and tissue scaffolds. Bijels are non-equilibrium structures formed by two non-mixable liquids and stabilized by a jammed layer of solid nanoparticles at their interface. The monomer used in this thesis work is ε-caprolactone, which is able to entrap a water-based HAp dispersion into its matrix during its polymerization. This way, it was possible to create a porous bicontinuous structure with hydroxyapatite nanoparticles at the interface. The obtained product was analysed to investigate its morphology and internal structure. Three different production methods have been tested. Thermal and chemical-physical stability tests were performed in order to understand which method and thermal condition was the best one for the bijel production. Finally, release tests were performed. Since bijels are constituted by both an aqueous and an organic phase, they may be able to load both hydrophilic and lipophilic drugs at the same time, simultaneously releasing them in a controlled way. To this purpose, different drug mimetics have been used, both hydrophobic (pyrene, fluorescein isothiocyanate isomer I) and hydrophilic (fluorescein, rhodamine B, fluorescein isothiocyanate-dextran 70000). The results were calculated in terms of released percentage with respect to the loaded amount of fluorophore in order to test the ability of the product to control the release of both lipophilic and hydrophilic drug mimetics.File | Dimensione | Formato | |
---|---|---|---|
Tesi ELENA COSTE.pdf
solo utenti autorizzati dal 09/09/2021
Dimensione
9.42 MB
Formato
Adobe PDF
|
9.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166592