The measurement of time intervals on multiple channels with high performance is now an important necessity in a large number of applications such as Laser Imaging Detection and Ranging (LIDAR) and Time–of–Flight (TOF) Positron Emission Tomography (PET). Research in this field of measurement aims to achieve high time resolution, accuracy and precision while maintaining a wide dynamic range and high measurement speed. With particular emphasis on multi-channel systems, whether they are based on Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA), it is essential an accurate control of crosstalk phenomena starting from a correct design of the Printed Circuit Board (PCB) that hosts the measuring device; such effects are in fact able to heavily distort the measurements producing, for example, depth measurement alterations in LIDAR systems and halos or graphical artifacts in TOF–PET systems. In this work will be analyzed an existing instrument whose measurements are affected by crosstalk errors caused by the lack of optimization of the PCB layout. Following the analysis to identify the causes of these problems, design guidelines will be drawn up; these will then be then applied to the development of a new measuring instrument. Subsequently, the validation of the new instrument will follow, during which new problems related to the crosstalk effect inside the measuring device, in this case an FPGA, will be highlighted. The study of this problem will reveal the presence of a trade–off between the performance of the architecture of the time meter and its portability to other FPGA based systems. This last result will represent a starting point for the study of new firmware solutions capable of maintaining portability between different systems, while ensuring high levels of performance.
La misura di intervalli di tempo su più canali con alte performance è, al giorno d’oggi, un’importante necessità in un vasto numero di applicazioni come i Laser Imaging Detection and Ranging (LIDAR) e la Time-of-Flight (TOF) Positron Emission Tomography (PET). La ricerca in questo settore di misura ha come obiettivo quello di ottenere una sempre maggiore risoluzione temporale, precisione ed accuratezza mantenendo allo stesso tempo un largo range dinamico e un’elevata velocità di misurazione. Con particolare riferimento ai sitemi multicanale, siano essi basati su Application Specific Integrated Circuit (ASIC) o su Field Programmable Gate Array (FPGA), è fondamentale un accurato controllo dei fenomeni di crosstalk a partire da una corretta progettazione del Printed Circuit Board (PCB) che ospita il dispositivo di misura; tali effetti sono infatti in grado di distorcere pesantemente le misure producendo, ad esempio, alterazioni della misura di profondità nei sitemi LIDAR e aloni o artefatti grafici nei sistemi TOF–PET. In questo lavoro verrà analizzato uno strumento esistente le cui misure sono però affette da errori di crosstalk causati dalla mancata ottimizzazione del layout del PCB. In seguito all’analisi per l’individuazione delle cause di tali problemi, verrano stese delle linee guida di progettazione; queste verranno quindi applicate allo sviluppo di un nuovo strumento di misura. Seguirà quindi la validazione di tale strumento durante la quale verranno evidenziate nuove problematiche legate all’effetto di crosstalk all’interno del dispositivo di misura, in questo caso un FPGA. Lo studio di tale problematica farà emergere la presenza di un equilibrio tra le performance dell’architettura del misuratore di tempo e della sua portabilità verso altri sistemi basati su FPGA. Quest’ultimo risultato rappresenterà un punto di partenza per lo studio di nuove soluzioni firmware capaci di mantenere la portabilità tra diversi sistemi, garantendo allo stesso tempo alti livelli di performance.
Crosstalk effects analysis and solutions in FPGA-based time-to-digital converters
LOCRI, GIANLUCA
2019/2020
Abstract
The measurement of time intervals on multiple channels with high performance is now an important necessity in a large number of applications such as Laser Imaging Detection and Ranging (LIDAR) and Time–of–Flight (TOF) Positron Emission Tomography (PET). Research in this field of measurement aims to achieve high time resolution, accuracy and precision while maintaining a wide dynamic range and high measurement speed. With particular emphasis on multi-channel systems, whether they are based on Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA), it is essential an accurate control of crosstalk phenomena starting from a correct design of the Printed Circuit Board (PCB) that hosts the measuring device; such effects are in fact able to heavily distort the measurements producing, for example, depth measurement alterations in LIDAR systems and halos or graphical artifacts in TOF–PET systems. In this work will be analyzed an existing instrument whose measurements are affected by crosstalk errors caused by the lack of optimization of the PCB layout. Following the analysis to identify the causes of these problems, design guidelines will be drawn up; these will then be then applied to the development of a new measuring instrument. Subsequently, the validation of the new instrument will follow, during which new problems related to the crosstalk effect inside the measuring device, in this case an FPGA, will be highlighted. The study of this problem will reveal the presence of a trade–off between the performance of the architecture of the time meter and its portability to other FPGA based systems. This last result will represent a starting point for the study of new firmware solutions capable of maintaining portability between different systems, while ensuring high levels of performance.File | Dimensione | Formato | |
---|---|---|---|
GianlucaLocri.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
4.54 MB
Formato
Adobe PDF
|
4.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166780