The research activity presented in the thesis has set the goal of characterizing the microchannel plate (MCP) device as a real-time detector for a positron beam and to study its applicability to interferometry with antimatter. The latter target was inspired by the advantage obtained by using a real-time detector in measuring the interferometric pattern produced in the experiment QUPLAS (Quantum interferometry and gravitation with Positrons and LASers). The thesis is divided into three main chapters: 1. The motivations and objectives of the experiments on the gravitational behaviour of antimatter are examined, paying particular attention to those that, like QUPLAS, operate with positrons. 2. The experimental configurations and techniques of the three phases of the QUPLAS experiment are described. 3. The structure and the working principle of the MCP and the experiments and methods used for the characterization of the device are analysed in detail. Starting from the fundamental physics involved in QUPLAS, the first chapter explains that the experiment will carry out a measurement of the gravitational fall of the positronium which is a system composed of matter and antimatter (electron and positron). This represents a test of CPT symmetry and of the weak equivalence principle on which the theory of gravity is supported in the frame of the general relativity. A violation of one of these cornerstones would indicate the need for a modification of the standard model or of the classical gravitational theory. The second chapter is divided into a more detailed analysis of the phases of the QUPLAS experiment. Having already been completed, the first phase also presents the results that provided the first demonstration of interferometry with antimatter (positrons). Subsequently, the designs of the experimental setups and the objectives of the second and third phase, which consist respectively of performing interferometry with positronium and measuring its gravitational fall, are presented. A brief overview on the positronium formation and cooling is also present. In the final part, some methods are proposed to detect the interferometric pattern. These methods do not operate in real time. The third chapter deals first with analysing the typical structure of an MCP detector and exposes the different variants. The signal multiplication process based on the avalanche production of secondary electrons caused by the collisional excitation provided by the incident particles, which in our case are positrons, is then described. The discussion then focuses on the description of the two experiments, with the related experimental setups, designed to determine the spatial resolution and the detection efficiency of the detector. The experimental apparatus of the first configuration is composed of the positron beamline (similar to that of the QUPLAS experiment), the MCP detector followed by a phosphor screen and a CCD camera. The development of algorithms for the software analysis of the images acquired by the CCD has played a fundamental role in determining the spatial resolution and the efficiency of the detector. The discussion then continues with the description of the algorithms developed in the research conducted by the author. This section also explains how the noise was managed and the problem of the overlapping of the spots as a cause of inaccuracy in data analysis is highlighted. The overlapping effect is studied in more detail as a function of the spot size of the individual particles, the overall beam width and the number of individual spots for a given data frame. The characterization of the device ends with the analysis of the detection efficiency as a function of energy. In conclusion, the results obtained are shown and the hypothesis of applying the instrumentation and techniques just discussed to antimatter interferometry is examined by proposing a magnified interferometric system which is compatible from the point of view of the resolution with the characterized real time detector.
L’attività di ricerca si è posta l’obiettivo di caratterizzare il dispositivo MCP (microchannel plate) nella funzione di real-time detector per un fascio di positroni e di studiarne l’applicabilità all’interferometria con antimateria. Quest’ultimo obiettivo è stato ispirato dal vantaggio ottenibile utilizzando un rilevatore in tempo reale nella misurazione del pattern interferometrico prodotto nell’esperimento QUPLAS (Quantum interferometry and gravitation with Positrons and LASers). La tesi è suddivisa in tre capitoli principali: 1. Vengono esaminate le motivazioni e gli obiettivi degli esperimenti sul comportamento gravitazionale dell'antimateria dando una particolare attenzione a quelli che, come QUPLAS, operano con particelle di positronio. 2. Si descrivono le configurazioni e la tecnica sperimentali delle tre fasi dell’esperimento QUPLAS. 3. Vengono analizzati dettagliatamente la struttura ed il funzionamento del MCP e gli esperimenti ed i metodi utilizzati per la caratterizzazione del dispositivo. Partendo dalla fisica fondamentale implicata in QUPLAS, il primo capitolo spiega che effettuare una misurazione della caduta gravitazionale di un sistema composto da materia ed antimateria (elettrone e positrone) come il positronio, rappresenta un test di simmetria CPT e del principio di equivalenza debole sul quale si regge la teoria della gravità nel frame della relatività generale. Una violazione di uno di questi caposaldi indicherebbe la necessità di una modifica del modello standard o della teoria gravitazionale classica. Il secondo capitolo si suddivide in un’analisi più dettaglia delle tra fasi dell’esperimento QUPLAS. Essendo già stata portata a compimento, della prima fase vengono presentati anche i risultati che hanno fornito la prima dimostrazione di interferometria con antimateria (positroni). Successivamente vengono presentati i design dei setup sperimentali e gli obiettivi della seconda e terza fase che consistono rispettivamente nel fare interferometria con positronio e nel misurarne la caduta gravitazionale. Nella parte finale si propongono diversi metodi di rilevamento del pattern interferometrico, tutti non operanti in tempo reale. Il terzo capitolo si occupa in prima battuta di analizzare la struttura tipica di un MCP detector e ne espone le diverse varianti. Successivamente viene descritto il processo di moltiplicazione del segnale basato sulla produzione a valanga di elettroni secondari grazie all’eccitazione collisionale fornita dalle particelle incidenti, che nel nostro caso sono positroni. La discussione si focalizza poi sulla descrizione dei due esperimenti, con i relativi setup sperimentali, atti a determinare la risoluzione spaziale e l’efficienza di rilevazione del detector. L’apparato sperimentale della prima configurazione è composto dalla beamline di positroni (simile a quella dell’esperimento QUPLAS), dal detector MCP seguito da uno schermo al fosforo ed una camera CCD. Lo sviluppo di algoritmi per l’analisi software delle immagini acquisite dalla CCD ha svolto un ruolo di fondamentale importanza per la determinazione della risoluzione spaziale e dell’efficienza del detector. La trattazione prosegue quindi con la descrizione degli algoritmi sviluppati nella ricerca condotta dall’autore. In questa sezione viene anche spiegato come è stato gestito il rumore e viene messo in luce il problema della sovrapposizione degli spot come causa di imprecisione nell’analisi dei dati. L’effetto della sovrapposizione viene studiato più dettagliatamente in funzione della dimensione dello spot delle singole particelle, dell'ampiezza complessiva del fascio e del numero dei singoli spot per un dato frame di dati. La caratterizzazione del dispositivo si conclude con l'analisi dell'efficienza di rilevamento in funzione dell'energia. In conclusione, vengono mostrati i risultati ottenuti e si esamina l'ipotesi di applicare la strumentazione e le tecniche appena discusse all'interferometria con antimateria, proponendo un sistema interferometrico magnificato e compatibile dal punto di vista della risoluzione con il rivelatore in tempo reale caratterizzato.
Microchannel plate detector characterization for real-time monitoring of a positron beam and application to antimatter interferometry
Vinelli, Giuseppe
2019/2020
Abstract
The research activity presented in the thesis has set the goal of characterizing the microchannel plate (MCP) device as a real-time detector for a positron beam and to study its applicability to interferometry with antimatter. The latter target was inspired by the advantage obtained by using a real-time detector in measuring the interferometric pattern produced in the experiment QUPLAS (Quantum interferometry and gravitation with Positrons and LASers). The thesis is divided into three main chapters: 1. The motivations and objectives of the experiments on the gravitational behaviour of antimatter are examined, paying particular attention to those that, like QUPLAS, operate with positrons. 2. The experimental configurations and techniques of the three phases of the QUPLAS experiment are described. 3. The structure and the working principle of the MCP and the experiments and methods used for the characterization of the device are analysed in detail. Starting from the fundamental physics involved in QUPLAS, the first chapter explains that the experiment will carry out a measurement of the gravitational fall of the positronium which is a system composed of matter and antimatter (electron and positron). This represents a test of CPT symmetry and of the weak equivalence principle on which the theory of gravity is supported in the frame of the general relativity. A violation of one of these cornerstones would indicate the need for a modification of the standard model or of the classical gravitational theory. The second chapter is divided into a more detailed analysis of the phases of the QUPLAS experiment. Having already been completed, the first phase also presents the results that provided the first demonstration of interferometry with antimatter (positrons). Subsequently, the designs of the experimental setups and the objectives of the second and third phase, which consist respectively of performing interferometry with positronium and measuring its gravitational fall, are presented. A brief overview on the positronium formation and cooling is also present. In the final part, some methods are proposed to detect the interferometric pattern. These methods do not operate in real time. The third chapter deals first with analysing the typical structure of an MCP detector and exposes the different variants. The signal multiplication process based on the avalanche production of secondary electrons caused by the collisional excitation provided by the incident particles, which in our case are positrons, is then described. The discussion then focuses on the description of the two experiments, with the related experimental setups, designed to determine the spatial resolution and the detection efficiency of the detector. The experimental apparatus of the first configuration is composed of the positron beamline (similar to that of the QUPLAS experiment), the MCP detector followed by a phosphor screen and a CCD camera. The development of algorithms for the software analysis of the images acquired by the CCD has played a fundamental role in determining the spatial resolution and the efficiency of the detector. The discussion then continues with the description of the algorithms developed in the research conducted by the author. This section also explains how the noise was managed and the problem of the overlapping of the spots as a cause of inaccuracy in data analysis is highlighted. The overlapping effect is studied in more detail as a function of the spot size of the individual particles, the overall beam width and the number of individual spots for a given data frame. The characterization of the device ends with the analysis of the detection efficiency as a function of energy. In conclusion, the results obtained are shown and the hypothesis of applying the instrumentation and techniques just discussed to antimatter interferometry is examined by proposing a magnified interferometric system which is compatible from the point of view of the resolution with the characterized real time detector.File | Dimensione | Formato | |
---|---|---|---|
TesiPolimi_GVinelli.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166813