Amplitude modulated (AM) gyroscopes are the first MEMS gyros to be commercially available and they are still the most popular on the market. However, these devices have some intrinsic limits regarding scale factor and offset stability, which preclude their use in applications requiring high accuracy, such as inertial navigation. In the last few years, a new MEMS gyroscope architecture, called Lissajous Frequency Modulated (LFM), has been proposed in literature in order to overcome the AM gyroscopes limits and ensure high stability performances. This thesis work is within the development of the most complete integrated circuit implemented so far for such kind of sensors. The following chapters will describe the working principle of LFM gyroscopes and subsequently the electronic processing blocks will be developed. Starting from an old implementation, the digital processing unit will be designed, with the aim of integrating it in the same chip with the other processing blocks, in order to improve the performance and allow simultaneous measurements on both axes of the gyroscope. The performance of the digital unit will be tested by providing the behavioral model in VHDL of the frequency to digital converter, as a testbench, at the input of the digital part.

I primi giroscopi MEMS ad essere commercializzati sono i giroscopi a modulazione di ampiezza (AM) e risultano tuttora i più diffusi sul mercato. Tuttavia, questi dispositivi presentano dei limiti intrinseci riguardanti la stabilità di fattore di scala e offset, che ne precludono l’utilizzo in applicazioni che richiedono un’alta accuratezza, come la navigazione inerziale. Negli ultimi anni è stata proposta in letteratura una nuova architettura di giroscopio MEMS, a modulazione di frequenza di tipo Lissajous (LFM) per superare i limiti dei giroscopi AM e garantire elevate prestazioni in termini di stabilità. Questo lavoro di tesi rientra nello sviluppo del circuito integrato più completo implementato finora per questo tipo di sensore. Nei capitoli che seguono verrà quindi descritto il funzionamento dei giroscopi LFM, per poi procedere con lo svilupo del sistema elettronico. Partendo da una vecchia implementazione, si progetterà l'unità di elaborazione digitale, per integrarla nello stesso chip con gli altri blocchi di elaborazione, in modo da migliorare le prestazioni e consentire misure simultanee su entrambi gli assi del giroscopio. Le prestazioni dell'unità digitale saranno testate fornendo il modello in VHDL del FDC (Frequency to Digital Converter), come test bench, all'ingresso della parte digitale.

Integrated digital processing unit for Lissajous FM MEMS gyroscopes

DEDOLLI, IRISA
2019/2020

Abstract

Amplitude modulated (AM) gyroscopes are the first MEMS gyros to be commercially available and they are still the most popular on the market. However, these devices have some intrinsic limits regarding scale factor and offset stability, which preclude their use in applications requiring high accuracy, such as inertial navigation. In the last few years, a new MEMS gyroscope architecture, called Lissajous Frequency Modulated (LFM), has been proposed in literature in order to overcome the AM gyroscopes limits and ensure high stability performances. This thesis work is within the development of the most complete integrated circuit implemented so far for such kind of sensors. The following chapters will describe the working principle of LFM gyroscopes and subsequently the electronic processing blocks will be developed. Starting from an old implementation, the digital processing unit will be designed, with the aim of integrating it in the same chip with the other processing blocks, in order to improve the performance and allow simultaneous measurements on both axes of the gyroscope. The performance of the digital unit will be tested by providing the behavioral model in VHDL of the frequency to digital converter, as a testbench, at the input of the digital part.
BESTETTI, MARCO
ING - Scuola di Ingegneria Industriale e dell'Informazione
2-ott-2020
2019/2020
I primi giroscopi MEMS ad essere commercializzati sono i giroscopi a modulazione di ampiezza (AM) e risultano tuttora i più diffusi sul mercato. Tuttavia, questi dispositivi presentano dei limiti intrinseci riguardanti la stabilità di fattore di scala e offset, che ne precludono l’utilizzo in applicazioni che richiedono un’alta accuratezza, come la navigazione inerziale. Negli ultimi anni è stata proposta in letteratura una nuova architettura di giroscopio MEMS, a modulazione di frequenza di tipo Lissajous (LFM) per superare i limiti dei giroscopi AM e garantire elevate prestazioni in termini di stabilità. Questo lavoro di tesi rientra nello sviluppo del circuito integrato più completo implementato finora per questo tipo di sensore. Nei capitoli che seguono verrà quindi descritto il funzionamento dei giroscopi LFM, per poi procedere con lo svilupo del sistema elettronico. Partendo da una vecchia implementazione, si progetterà l'unità di elaborazione digitale, per integrarla nello stesso chip con gli altri blocchi di elaborazione, in modo da migliorare le prestazioni e consentire misure simultanee su entrambi gli assi del giroscopio. Le prestazioni dell'unità digitale saranno testate fornendo il modello in VHDL del FDC (Frequency to Digital Converter), come test bench, all'ingresso della parte digitale.
File allegati
File Dimensione Formato  
main_LFM.pdf

accessibile in internet solo dagli utenti autorizzati

Descrizione: Master's Thesis
Dimensione 10.76 MB
Formato Adobe PDF
10.76 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/166912