Metallic components prone to severe conditions require a novel redesign and manufacturing approach. Engineered multi-material composition and avoiding abrupt changes by gradient design result in optimized, resistant components. The aim of the present research work is a systematic theoretical and experimental study of functionally graded material (FGM) design for laser metal deposition (LMD) process and thin-wall fabrication of a highly demanded metallic FGM; AISI 316L (well-known due to excellent mechanical strength and corrosion resistance) and Inconel 625 (which possesses amazing hardness and strength, corrosion and stress corrosion, in addition to high fatigue resistance). This FGM is greatly applicable in aerospace, chemical and nuclear plants, energy conversion and oil & gas industrial sectors, where the components are subjected to harsh environments under heavy loadings. The LMD machine was adapted to be capable of multi-material FGM printing through mixing certain ratios of selected AM powders. The research project was carried out at four stages: 1-The calibration of mass flowrate of the AM powders (linear relation between RPM of the hoppers and the powder mass flowrate). 2-Single track deposition of the two alloys to determine the optimum common process window for LMD processing (700W power, and 16 g/min powder flowrate were selected as a good starting point for solubility assessment). 3-A first design of experiment (DOE) to realize the FGM thin-wall samples taking advantage of a fixed panel of process parameters from previous step, designing 9 distinguished thin walls of the same height and length, height of each was divided into three equal sections: AISI 316L, gradient zone with mixed AISI 316L and Inconel 625 at different portions (90%-10% to 10%-90%), and Inconel 625 on top. 4-A power effect assessment to explore the effect of laser power on the results of printing pure AISI 316L, Inconel 625 and diverse mixture ratios of both. For power effect assessment, three levels of power, 400W-500W-600W, and six levels of powder mixtures (100%, 80%, 60%, 40%, 20%, 0% AISI316L content). Considering 18 unique combinations, 2 replicas were printed for each, resulting in 36 LMD printed thin walls, all uniform composition along the height, printed to determine a power window for printing an FGM with composition transition from AISI 316L to Inconel 625. At solubility assessment, dimensional results showed constant reduction in the height of the FGM thin walls with an increase in Inconel 625 content. Regarding the length of prints, the gradient zone was the longest. Thickness of the samples also showed a good uniformity with respect to each other, while demonstrating an increase for each single sample, going from bottom of the thin wall (substrate) to top (Inconel 625), the Inconel 625 deposit part was the thickest. Maximum amount of porosity was measured at the middle (gradient) zone. AISI 316L part of printed thin walls possessed the lowest %porosity values. Very few cases of crack formation were observed for 9 samples, except for sample with 70% AISI 316L-30% Inconel 625 gradient zone. The microstructural assessment of 9 samples confirmed the expected microstructure for AM-deposited AISI 316L and Inconel 625, as well as mixture of the two. At mixed powder area, at interphases, no abrupt microstructure variation existed which is promising regarding the miscibility of the two alloys. The whole map of microstructure demonstrated a well epitaxial growth of grains, layer-by-layer, reaching an equiaxed grain structure at the top due to very fast solidification. EDS analysis of 9 samples showed good conservation of chemical content of alloys at diverse powder mixture ratios among the 9 samples, with no abrupt change. The microhardness results of 9 samples also exhibited no specific trend while increasing the Inconel 625 content. It was highlighted that the range of variation in microhardness values was close to the microhardness of pure AISI 316L or Inconel 625 deposited thin walls. At power effect assessment, increasing effect of power and decreasing effect of Inconel 625 content on the height of samples were observed. The power increased the length of thin walls. The difference between maximum and minimum lengths at each power was almost the same. For the average thickness, the trend with Inconel 625 content was increasing, while the power seemed to have an impact from 400W to 500W and turned ineffective with increase to 600W. The measured %porosity of the cross-section exhibited a random disordered scattering of data. Changing the power from 500W to 600W increases the %porosity to a large extent. At higher powers, the discrepancy between the results of similar samples was increased. A relatively low value of %porosity for all samples (maximum 0.8%), and significant increase in the porosity at 600W power was concluded. Having a little amount of Inconel 625 added to AISI 316L, and relatively low laser power in the process produced a large amount of porosity inside the printed thin walls. Spherical pores as large as 100µm were observed in microscopic images. The round and small pores were seen in all samples regardless of the process parameters. Few cases were found containing relatively large or irregular pores. From the evidence of crack, pure Inconel 625 printing, regardless of laser power was highly exposed to crack initiation. Next frequent case of crack formation was pure AISI 316L with low power (400W). The almost unchanged microstructure of printed thin walls via LMD with fixed powder mixture ratio and varying laser power was observed. Larger microstructural features and faster grain growth of the samples for thin walls characterized by 40% Inconel 625 or more due to increase in the power were observed. The growth of dendritic structure due to increasing power was highlighted in 100% Inconel 625 printed samples. While increasing the power, the uniformity of the microstructure was increased. The most uniform case of microstructure features, least seen secondary phases and segregations, and well-distributed cellular structures was observed for all powder mixture ratios at 600W. Power did not affect the W% variation trend among the samples. Constant Fe and Ni contents at each powder mixture ratio by increasing power were visible. The results of microhardness measurements showed a mild reduction moving from substrate to the top of each thin wall, followed by a slight increase near the top due to very fast solidification rate. At 80% AISI 316L, the increase of microhardness at the top of the walls was disappeared. The range of microhardness variation for all samples was the same, except that the profiles started from higher microhardness values by increasing the Inconel 625 content. For 40% AISI 316L samples, the higher microhardness values were related to the ones printed with 400W. This was also the case for thin walls with higher Inconel content. The more the Inconel 625 content, the more the discrepancy between the samples with fixed powder mixture ratio. Generally, a slight reduction in microhardness of samples by increasing power is inferred. For pairs of samples characterized by 400W, 60% AISI 316L-40% Inconel 625, and 500W, 100% AISI 316L, no evidence of large or irregular porosity, crack formation and propagation, abnormal microstructural features or large segregation and secondary phases was observed. In the end, the following were recommended to design a power-optimized gradient zone layering to fabricate an AISI 316L-Inconel 625 FGM thin-wall specimen via LMD process: • First layer of pure AISI 316L with at least 500W power • Second layer of 80% AISI 316L-20% Inconel 625 with 500W power • Third layer of 60% AISI 316L-40% Inconel 625 with 400W power • Fourth layer of 40% AISI 316L-60% Inconel 625 with 400W power, or powers higher than 600W should be investigated • Fifth layer of 20% AISI 316L-80% Inconel 625 with 400W power, or powers higher than 600W should be investigated • Sixth layer of pure Inconel 625 with 400W (with a slight chance of cracking) or higher powers should be investigated.
I componenti metallici soggetti a condizioni severe richiedono un nuovo approccio di riprogettazione e produzione. La composizione multimateriale ingegnerizzata e l'eliminazione di bruschi cambiamenti grazie al design a gradiente producono componenti ottimizzati e resistenti. Lo scopo del presente lavoro di ricerca è uno studio sistematico, teorico e sperimentale, della progettazione di materiali funzionalmente graduati (FGM) per il processo di deposizione laser di metalli (LMD) e la fabbricazione a pareti sottili di una FGM metallica altamente richiesta; AISI 316L (noto per l'eccellente resistenza meccanica e resistenza alla corrosione) e Inconel 625 (che possiede incredibili durezza e resistenza, corrosione e tensocorrosione, oltre a un'elevata resistenza alla fatica). Questo FGM è ampiamente applicabile negli impianti aerospaziali, chimici e nucleari, nella conversione di energia e nei settori industriali del petrolio e del gas, dove i componenti sono soggetti ad ambienti difficili sotto carichi pesanti. La macchina LMD è stata personalizzata per essere in grado di stampare FGM multimateriale attraverso la miscelazione di determinati rapporti di polveri AM selezionate. Il progetto di ricerca si è svolto in quattro fasi: 1-La calibrazione della portata massica delle polveri AM (relazione lineare tra RPM delle tramogge e portata massica della polvere). Deposizione a 2 tracce singole delle due leghe per determinare la finestra di processo comune ottimale per l'elaborazione LMD (700 W di potenza e 16 g/min di portata della polvere sono stati selezionati come buon punto di partenza per la prima campagna DOE). 3-Una prima campagna di progettazione dell'esperimento (DOE) per realizzare i campioni di pareti sottili FGM sfruttando un pannello fisso di parametri di processo dal passaggio precedente, progettando 9 pareti sottili distinte della stessa altezza e lunghezza, l'altezza di ciascuna è stata suddivisa in tre sezioni uguali: AISI 316L, zona gradiente con AISI 316L e Inconel 625 misti in porzioni diverse (dal 90% -10% al 10% -90%) e Inconel 625 sopra. 4-Una seconda campagna DOE per esplorare l'effetto della potenza laser sui risultati della stampa di AISI 316L puro, Inconel 625 e diversi rapporti di miscela di entrambi. Per la seconda campagna, tre livelli di potenza, 400W-500W-600W e sei livelli di miscele di polveri (contenuto 100%, 80%, 60%, 40%, 20%, 0% AISI316L). Considerando 18 combinazioni uniche, sono state stampate 2 repliche per ciascuna, risultando in 36 pareti sottili stampate in LMD, tutte con composizione uniforme lungo l'altezza, stampate per determinare una finestra di potenza per la stampa di una MGF con transizione di composizione da AISI 316L a Inconel 625. Nella prima campagna DOE, i risultati dimensionali hanno mostrato una riduzione costante dell'altezza delle pareti sottili FGM con un aumento del contenuto di Inconel 625. Per quanto riguarda la lunghezza delle stampe, la zona del gradiente era la più lunga. Anche lo spessore dei campioni ha mostrato una buona uniformità l'uno rispetto all'altro, pur dimostrando un aumento per ogni singolo campione, passando dal fondo della parete sottile (substrato) verso l'alto (Inconel 625), la parte di deposito di Inconel 625 era la più spessa. La quantità massima di porosità è stata misurata nella zona centrale (gradiente). La parte in AISI 316L delle pareti sottili stampate possedeva i valori di porosità% più bassi. Sono stati osservati pochissimi casi di formazione di crepe per 9 campioni, ad eccezione del campione con zona di gradiente di AISI 316L-30% Inconel 625 al 70%. La valutazione microstrutturale di 9 campioni ha confermato la microstruttura attesa per AISI 316L e Inconel 625 depositati in AM, così come la miscela dei due. Nell'area delle polveri miste, nelle fasi interfase, non esisteva alcuna variazione brusca della microstruttura, il che è promettente per quanto riguarda la miscibilità delle due leghe. L'intera mappa della microstruttura ha dimostrato una crescita ben epitassiale dei grani, strato per strato, raggiungendo una struttura di grano equiassiale nella parte superiore a causa della solidificazione molto rapida. L'analisi EDS di 9 campioni ha mostrato una buona conservazione del contenuto chimico delle leghe a diversi rapporti di miscela di polveri tra i 9 campioni, senza cambiamenti improvvisi. Anche i risultati di micro-durezza di 9 campioni non hanno mostrato alcuna tendenza specifica aumentando il contenuto di Inconel 625. È stato evidenziato che il range di variazione dei valori di micro-durezza era vicino alla micro-durezza delle pareti sottili depositate di AISI 316L o Inconel 625 puro. Durante la seconda campagna, sono stati osservati un effetto crescente della potenza e un effetto decrescente del contenuto di Inconel 625 sull'altezza dei campioni. Il potere ha aumentato la lunghezza delle pareti sottili. La differenza tra le lunghezze massime e minime a ciascuna potenza era quasi la stessa. Per lo spessore medio, il trend con il contenuto di Inconel 625 era in aumento, mentre la potenza sembrava avere un impatto da 400W a 500W e si è rivelata inefficace con l'aumento a 600W. La porosità% misurata della sezione trasversale ha mostrato una dispersione disordinata casuale dei dati. La modifica della potenza da 500 W a 600 W aumenta in larga misura la percentuale di porosità. A potenze superiori, la discrepanza tra i risultati di campioni simili è stata aumentata. Si è concluso un valore relativamente basso della percentuale di porosità per tutti i campioni (massimo 0,8%) e un aumento significativo della porosità a 600W di potenza. L'aggiunta di una piccola quantità di Inconel 625 all'AISI 316L e una potenza laser relativamente bassa nel processo produceva una grande quantità di porosità all'interno delle pareti sottili stampate. Nelle immagini microscopiche sono stati osservati pori sferici grandi fino a 100 µm. I pori rotondi e piccoli sono stati osservati in tutti i campioni indipendentemente dai parametri di processo. Sono stati trovati pochi casi contenenti pori relativamente grandi o irregolari. Dall'evidenza di crepe, la stampa Inconel 625 pura, indipendentemente dalla potenza del laser, era altamente esposta all'innesco di incrinature. Il successivo caso frequente di formazione di crepe è stato puro AISI 316L con bassa potenza (400 W). È stata osservata la microstruttura quasi invariata di pareti sottili stampate tramite LMD con rapporto di miscela di polveri fisso e potenza laser variabile. Sono state osservate caratteristiche microstrutturali più grandi e una crescita più rapida dei grani dei campioni per pareti sottili caratterizzate da Inconel 625 al 40% o più a causa dell'aumento della potenza. La crescita della struttura dendritica dovuta all'aumento della potenza è stata evidenziata nei campioni stampati al 100% di Inconel 625. Aumentando la potenza, è stata aumentata l'uniformità della microstruttura. Il caso più uniforme di caratteristiche microstrutturali, fasi secondarie e segregazioni meno visibili e strutture cellulari ben distribuite è stato osservato per tutti i rapporti di miscela di polveri a 600W. La potenza non ha influenzato l'andamento della variazione del W% tra i campioni. Erano visibili contenuti costanti di Fe e Ni a ciascun rapporto di miscela di polveri aumentando la potenza. I risultati delle misurazioni della micro-durezza hanno mostrato una lieve riduzione spostandosi dal substrato alla sommità di ciascuna parete sottile, seguita da un leggero aumento vicino alla sommità a causa della velocità di solidificazione molto elevata. All'80% di AISI 316L, l'aumento della micro-durezza nella parte superiore delle pareti è scomparso. L'intervallo di variazione della micro-durezza per tutti i campioni era lo stesso, tranne per il fatto che i profili partivano da valori di micro-durezza più elevati aumentando il contenuto di Inconel 625. Per i campioni in AISI 316L al 40%, i valori di micro-durezza più elevati erano relativi a quelli stampati con 400W. Questo è stato anche il caso delle pareti sottili con un contenuto di Inconel più elevato. Maggiore è il contenuto di Inconel 625, maggiore è la discrepanza tra i campioni con rapporto di miscela di polveri fisso. Generalmente, si deduce una leggera riduzione della micro-durezza dei campioni aumentando la potenza. Per coppie di campioni caratterizzati da 400 W, 60% AISI 316L-40% Inconel 625 e 500 W, 100% AISI 316L, non è stata osservata alcuna evidenza di porosità grande o irregolare, formazione e propagazione di crepe, caratteristiche microstrutturali anormali o ampia segregazione e fasi secondarie. Alla fine, è stato consigliato quanto segue per progettare una stratificazione della zona del gradiente ottimizzata per la produzione di un campione a parete sottile in AISI 316L-Inconel 625 FGM tramite processo LMD: • Primo strato di puro AISI 316L con almeno 500W di potenza • Secondo strato di 80% AISI 316L-20% Inconel 625 con 500W di potenza • Terzo strato di 60% AISI 316L-40% Inconel 625 con 400W di potenza • Il quarto strato di 40% AISI 316L-60% Inconel 625 con 400 W di potenza o potenze superiori a 600 W • Il quinto strato di 20% AISI 316L-80% Inconel 625 con 400 W di potenza o potenze superiori a 600 W dovrebbe essere studiato • Il sesto strato di Inconel 625 puro da 400 W (con una leggera possibilità di crepe) o potenze superiori dovrebbe essere studiato.
A Comprehensive Study on Fabrication of AISI 316L-Inconel 625 Functionally Graded Material (FGM) via Laser Metal Deposition (LMD)
MATIN, KEIVAN
2019/2020
Abstract
Metallic components prone to severe conditions require a novel redesign and manufacturing approach. Engineered multi-material composition and avoiding abrupt changes by gradient design result in optimized, resistant components. The aim of the present research work is a systematic theoretical and experimental study of functionally graded material (FGM) design for laser metal deposition (LMD) process and thin-wall fabrication of a highly demanded metallic FGM; AISI 316L (well-known due to excellent mechanical strength and corrosion resistance) and Inconel 625 (which possesses amazing hardness and strength, corrosion and stress corrosion, in addition to high fatigue resistance). This FGM is greatly applicable in aerospace, chemical and nuclear plants, energy conversion and oil & gas industrial sectors, where the components are subjected to harsh environments under heavy loadings. The LMD machine was adapted to be capable of multi-material FGM printing through mixing certain ratios of selected AM powders. The research project was carried out at four stages: 1-The calibration of mass flowrate of the AM powders (linear relation between RPM of the hoppers and the powder mass flowrate). 2-Single track deposition of the two alloys to determine the optimum common process window for LMD processing (700W power, and 16 g/min powder flowrate were selected as a good starting point for solubility assessment). 3-A first design of experiment (DOE) to realize the FGM thin-wall samples taking advantage of a fixed panel of process parameters from previous step, designing 9 distinguished thin walls of the same height and length, height of each was divided into three equal sections: AISI 316L, gradient zone with mixed AISI 316L and Inconel 625 at different portions (90%-10% to 10%-90%), and Inconel 625 on top. 4-A power effect assessment to explore the effect of laser power on the results of printing pure AISI 316L, Inconel 625 and diverse mixture ratios of both. For power effect assessment, three levels of power, 400W-500W-600W, and six levels of powder mixtures (100%, 80%, 60%, 40%, 20%, 0% AISI316L content). Considering 18 unique combinations, 2 replicas were printed for each, resulting in 36 LMD printed thin walls, all uniform composition along the height, printed to determine a power window for printing an FGM with composition transition from AISI 316L to Inconel 625. At solubility assessment, dimensional results showed constant reduction in the height of the FGM thin walls with an increase in Inconel 625 content. Regarding the length of prints, the gradient zone was the longest. Thickness of the samples also showed a good uniformity with respect to each other, while demonstrating an increase for each single sample, going from bottom of the thin wall (substrate) to top (Inconel 625), the Inconel 625 deposit part was the thickest. Maximum amount of porosity was measured at the middle (gradient) zone. AISI 316L part of printed thin walls possessed the lowest %porosity values. Very few cases of crack formation were observed for 9 samples, except for sample with 70% AISI 316L-30% Inconel 625 gradient zone. The microstructural assessment of 9 samples confirmed the expected microstructure for AM-deposited AISI 316L and Inconel 625, as well as mixture of the two. At mixed powder area, at interphases, no abrupt microstructure variation existed which is promising regarding the miscibility of the two alloys. The whole map of microstructure demonstrated a well epitaxial growth of grains, layer-by-layer, reaching an equiaxed grain structure at the top due to very fast solidification. EDS analysis of 9 samples showed good conservation of chemical content of alloys at diverse powder mixture ratios among the 9 samples, with no abrupt change. The microhardness results of 9 samples also exhibited no specific trend while increasing the Inconel 625 content. It was highlighted that the range of variation in microhardness values was close to the microhardness of pure AISI 316L or Inconel 625 deposited thin walls. At power effect assessment, increasing effect of power and decreasing effect of Inconel 625 content on the height of samples were observed. The power increased the length of thin walls. The difference between maximum and minimum lengths at each power was almost the same. For the average thickness, the trend with Inconel 625 content was increasing, while the power seemed to have an impact from 400W to 500W and turned ineffective with increase to 600W. The measured %porosity of the cross-section exhibited a random disordered scattering of data. Changing the power from 500W to 600W increases the %porosity to a large extent. At higher powers, the discrepancy between the results of similar samples was increased. A relatively low value of %porosity for all samples (maximum 0.8%), and significant increase in the porosity at 600W power was concluded. Having a little amount of Inconel 625 added to AISI 316L, and relatively low laser power in the process produced a large amount of porosity inside the printed thin walls. Spherical pores as large as 100µm were observed in microscopic images. The round and small pores were seen in all samples regardless of the process parameters. Few cases were found containing relatively large or irregular pores. From the evidence of crack, pure Inconel 625 printing, regardless of laser power was highly exposed to crack initiation. Next frequent case of crack formation was pure AISI 316L with low power (400W). The almost unchanged microstructure of printed thin walls via LMD with fixed powder mixture ratio and varying laser power was observed. Larger microstructural features and faster grain growth of the samples for thin walls characterized by 40% Inconel 625 or more due to increase in the power were observed. The growth of dendritic structure due to increasing power was highlighted in 100% Inconel 625 printed samples. While increasing the power, the uniformity of the microstructure was increased. The most uniform case of microstructure features, least seen secondary phases and segregations, and well-distributed cellular structures was observed for all powder mixture ratios at 600W. Power did not affect the W% variation trend among the samples. Constant Fe and Ni contents at each powder mixture ratio by increasing power were visible. The results of microhardness measurements showed a mild reduction moving from substrate to the top of each thin wall, followed by a slight increase near the top due to very fast solidification rate. At 80% AISI 316L, the increase of microhardness at the top of the walls was disappeared. The range of microhardness variation for all samples was the same, except that the profiles started from higher microhardness values by increasing the Inconel 625 content. For 40% AISI 316L samples, the higher microhardness values were related to the ones printed with 400W. This was also the case for thin walls with higher Inconel content. The more the Inconel 625 content, the more the discrepancy between the samples with fixed powder mixture ratio. Generally, a slight reduction in microhardness of samples by increasing power is inferred. For pairs of samples characterized by 400W, 60% AISI 316L-40% Inconel 625, and 500W, 100% AISI 316L, no evidence of large or irregular porosity, crack formation and propagation, abnormal microstructural features or large segregation and secondary phases was observed. In the end, the following were recommended to design a power-optimized gradient zone layering to fabricate an AISI 316L-Inconel 625 FGM thin-wall specimen via LMD process: • First layer of pure AISI 316L with at least 500W power • Second layer of 80% AISI 316L-20% Inconel 625 with 500W power • Third layer of 60% AISI 316L-40% Inconel 625 with 400W power • Fourth layer of 40% AISI 316L-60% Inconel 625 with 400W power, or powers higher than 600W should be investigated • Fifth layer of 20% AISI 316L-80% Inconel 625 with 400W power, or powers higher than 600W should be investigated • Sixth layer of pure Inconel 625 with 400W (with a slight chance of cracking) or higher powers should be investigated.File | Dimensione | Formato | |
---|---|---|---|
Thesis Report-Keivan Matin-Final (14092020).pdf
non accessibile
Descrizione: Master Thesis Report-Materials Engineering
Dimensione
13.49 MB
Formato
Adobe PDF
|
13.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166975