This Master thesis work is focused on the development of new molecularly imprinted polymers and their application in volatile organic compounds detection as non-invasive early lung cancer diagnosis technique. This type of analysis is based on the correlation between volatile organic compounds (VOCs) contained in breaths and the progression of lung cancer. As a consequence of the tumour, human cells have an altered metabolism, characterized by the production of VOCs, which are used as a sort of fingerprint for lung cancer pathologies. In a typical exhaled breath-based approach, the breath from expiration is collected and its content is chemically analysed with gas chromatography-mass spectrometry technique, whose clinical use is limited by its analytical complexity and high costs. Among the different types of sensors used for gas detection, interdigitated electrodes (IDEs) combined with molecular imprinting technology (MIT) may represent a good alternative for their simple structure, high sensitivity and low cost. MIT is mainly applied to molecularly imprinted polymers (MIPs), i.e. polymer matrices, which are synthesized according to a molecular imprinting technique, that allows to generate cavities in the polymeric material with high affinity for a chosen "template" molecule. This work focused on the preparation and selection of the best formulations of MIP, in terms of initiator, cross-linking agent, functional monomer and template molecule, which were able to selectively reabsorb a specific template molecule, chosen among some VOCs normally related to lung cancer. In particular, four different methacrylate-based monomers were tested and toluene was chosen as template. The quantification of the amount of template reabsorbed by polymers was obtained through three analytical techniques: thermogravimetric analysis (TGA), high performance liquid chromatography (HPLC) and ultraviolet-visible (UV-Vis) spectroscopy. Methacrylic acid (MAA) resulted to be the most selective polymer to reabsorb toluene according to HPLC and UV-Vis analyses. Further experiments were carried out by combining four functional monomers, to study the possible change in the reabsorption capacity of the final MIP, which was characterised by UV-Vis technique, which turned out to be the most versatile analytical method in the detection of toluene. A preliminary screening was also carried out with other template molecules (2-butanone and hexanal). Finally, drop (DC) and spin coating (SC) methods were tested in order to obtain a thin layer of MIP (based on MAA) and imprinted with toluene to coat IDEs. In this regard, some parameters were varied to select the best conditions to produce MIP films over interdigitated electrodes.
Questo lavoro di tesi magistrale riguarda lo sviluppo di nuovi polimeri a stampo molecolare e la loro applicazione nella rilevazione di composti organici volatili come tecnica di diagnosi precoce e non invasiva del cancro ai polmoni. Questo tipo di analisi si basa sulla correlazione dei composti organici volatili (VOCs) contenuti nel respiro con la progressione del cancro al polmone. Come conseguenza del tumore, le cellule umane hanno un metabolismo alterato, caratterizzato dalla produzione di VOCs, che vengono utilizzati come una sorta di impronta digitale per le patologie del cancro al polmone. In un tipico approccio basato sull’analisi del respiro esalato, il respiro proveniente dalla fase di espirazione viene raccolto e il suo contenuto viene analizzato chimicamente con una tecnica di spettrometria di massa-cromatografica a gas, il cui uso clinico è limitato a causa della sua complessità analitica e dai costi elevati. Tra i diversi tipi di sensori utilizzati per il rilevamento dei gas, gli elettrodi interdigitati (IDEs) combinati con la tecnologia a stampo molecolare (MIT) possono rappresentare una buona alternativa grazie alla loro struttura semplice, all’alta sensibilità e al basso costo. La tecnologia MIT viene applicata principalmente ai polimeri a stampo molecolare (MIPs), ovvero a matrici polimeriche che vengono sintetizzate tramite MIT, la quale permette di generare cavità nel materiale polimerico con una affinità elevata per una molecola “template” scelta. Questo lavoro si focalizza sulla preparazione e sulla selezione delle migliori formulazioni di MIP, in termini di iniziatore, agente reticolante, monomero funzionale e molecola template, che sono state capaci di riassorbire selettivamente una molecola template specifica, scelta tra alcuni VOCs, che sono normalmente legati al cancro del polmone. In particolare, sono stati testati quattro diversi monomeri contenenti il gruppo metacrilato e come template è stato scelto il toluene. La determinazione della quantità di molecola riassorbita dai polimeri è stata ottenuta per mezzo di tre tecniche analitiche: l'analisi termogravimetrica (TGA), la cromatografia liquida ad alte prestazioni (HPLC) e la spettroscopia ultravioletta-visibile (UV-Vis). L'acido metacrilico (MAA) è risultato il polimero più selettivo in grado di riassorbire il toluene in accordo con le analisi HPLC e UV-Vis. Ulteriori esperimenti sono stati effettuati combinando i quattro monomeri funzionali, per studiare il possibile cambiamento nella capacità di riassorbimento del MIP finale, che è stato caratterizzato tramite la tecnica UV-Vis, che si è rivelata il metodo analitico più versatile nella rilevazione del toluene. È stato anche fatto uno screening preliminare con altre molecole template (2-butanone ed esanale). Infine, sono stati testati i metodi di rivestimento tramite goccia (DC) e rotazione (SC), in modo da ottenere un sottile strato di MIP (basato sul monomero MAA) e con il toluene come template, per poter così rivestire gli IDEs. A questo proposito, alcuni parametri sono stati variati per selezionare le migliori condizioni per produrre dei film di MIP sugli elettrodi interdigitati.
Molecularly imprinted polymers and volatile organic compounds detection for non-invasive early lung cancer diagnosis
MARONI, MARCO
2019/2020
Abstract
This Master thesis work is focused on the development of new molecularly imprinted polymers and their application in volatile organic compounds detection as non-invasive early lung cancer diagnosis technique. This type of analysis is based on the correlation between volatile organic compounds (VOCs) contained in breaths and the progression of lung cancer. As a consequence of the tumour, human cells have an altered metabolism, characterized by the production of VOCs, which are used as a sort of fingerprint for lung cancer pathologies. In a typical exhaled breath-based approach, the breath from expiration is collected and its content is chemically analysed with gas chromatography-mass spectrometry technique, whose clinical use is limited by its analytical complexity and high costs. Among the different types of sensors used for gas detection, interdigitated electrodes (IDEs) combined with molecular imprinting technology (MIT) may represent a good alternative for their simple structure, high sensitivity and low cost. MIT is mainly applied to molecularly imprinted polymers (MIPs), i.e. polymer matrices, which are synthesized according to a molecular imprinting technique, that allows to generate cavities in the polymeric material with high affinity for a chosen "template" molecule. This work focused on the preparation and selection of the best formulations of MIP, in terms of initiator, cross-linking agent, functional monomer and template molecule, which were able to selectively reabsorb a specific template molecule, chosen among some VOCs normally related to lung cancer. In particular, four different methacrylate-based monomers were tested and toluene was chosen as template. The quantification of the amount of template reabsorbed by polymers was obtained through three analytical techniques: thermogravimetric analysis (TGA), high performance liquid chromatography (HPLC) and ultraviolet-visible (UV-Vis) spectroscopy. Methacrylic acid (MAA) resulted to be the most selective polymer to reabsorb toluene according to HPLC and UV-Vis analyses. Further experiments were carried out by combining four functional monomers, to study the possible change in the reabsorption capacity of the final MIP, which was characterised by UV-Vis technique, which turned out to be the most versatile analytical method in the detection of toluene. A preliminary screening was also carried out with other template molecules (2-butanone and hexanal). Finally, drop (DC) and spin coating (SC) methods were tested in order to obtain a thin layer of MIP (based on MAA) and imprinted with toluene to coat IDEs. In this regard, some parameters were varied to select the best conditions to produce MIP films over interdigitated electrodes.File | Dimensione | Formato | |
---|---|---|---|
2020_10_Marco_Maroni.pdf
non accessibile
Descrizione: Tesi di Laurea Magistrale
Dimensione
5.62 MB
Formato
Adobe PDF
|
5.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/167207