Bio-inspired walking hexapod robots are a relatively young branch in robotics in both state of the art and applications. Despite their high degree of flexibility and adaptability derived by their redundant design, the research field that compliments their abilities is still very lacking. Politecnico of Milan decided to start this project to become an active contributor to the research of bio-inspired robotics designs and to advance hexapod robots model development. In this thesis work will be analysed state-of-the-art hexapod robot specific control software, and it will be formalised a model that allows for full control over robot speed, body orientation and walk gait type to employ. Furthermore a way to make the robot autonomously follow a set trajectory will be shown and terrain interaction will be deeply investigated, ending with the development of a terrain-adapting control algorithm that will allow the robot to react swiftly to terrain shape and asperities such as nonlinearities and noncontinuity within the workspace. Then it will be presented a dynamic model derived from the interpretation of the hexapod movement to be comparable to these of the base-platform PKM machines, and said model will be validated through Matlab SimMechanicsTM physics simulation. Robot 3D model and Inertial values will be calculated through a sophisticated Autodesk InventorTM assembly. Finally real experimental setups will be taken into account with reference to the PhantomX AX Metal Hexapod Mark II robot by Trossen RoboticsTM, and it will be presented a feed-back control system able to recognise leg-terrain touch and react accordingly to assure movement stability. Finally the control models developed will be put to test in real tasks to assess performances and robustness outside the simulation environment.
I robot esapodi bio-inspired camminatori sono una branca della robotica relativamente giovane in applicazioni e stato dell'arte. Nonostante il loro ampio raggio di flessibilità ed adattabilità derivata dal loro design ridondante, il campo di ricerca che complimenta le loro abilità è ancora molto lacunoso. Il Politecnico di Milano ha deciso di far partire questo progetto per diventare contributore attivo nella ricerca di design robotici bio-inspired e per far avanzare lo sviluppo di modelli per robot esapodi. In questo lavoro di tesi sarà analizzato software di controllo specifico per robot esapodi, e sarà formalizzato un modello che permetterà di ottenere completo controllo sulla velocità, orientamento del corpo e tipologia di andatura da applicare. Inoltre sarà mostrato un modo per far sì che il robot segua autonomamente una settata traiettoria e sarà studiata a fondo l'interazione con il terreno, finendo con lo sviluppo di un algoritmo di controllo che permetterà al robot di reagire prontamente alla forma del terreno ed alle asperità come nonlinearità e noncontinuità presenti all'interno del workspace. Poi sarà presentato un modello dinamico derivato dall'interpretazione del movimento del robot come comparabile a quello dei manipolatori a cinematica parallela di struttura base-piattaforma, e tale modello verrà validato attraverso una simulazione fisica attuata attraverso Matlab SimMechanicsTM. Il modello 3D del robot e i valori di inerzia saranno calcolati attraverso un complesso assemblaggio di Autodesk InventorTM. Infine setup sperimentali verranno presi in considerazione con riferimento al robot PhantomX AX Metal Hexapod Mark II prodotto da Trossen RoboticsTM, e verrà presentato un sistema di controllo in feed-back capace di riconoscere tocco gamba-terreno e di reagire di conseguenza per assicurare stabilità di movimento. Infine i modelli di controllo sviluppati saranno messi a test in task reali per valutare performance e robustezza fuori dall'ambiente di simulazione.
Control of a hexapod robot considering terrain interaction. Mechatronics and robotics
ZANGRANDI, MARCO
2019/2020
Abstract
Bio-inspired walking hexapod robots are a relatively young branch in robotics in both state of the art and applications. Despite their high degree of flexibility and adaptability derived by their redundant design, the research field that compliments their abilities is still very lacking. Politecnico of Milan decided to start this project to become an active contributor to the research of bio-inspired robotics designs and to advance hexapod robots model development. In this thesis work will be analysed state-of-the-art hexapod robot specific control software, and it will be formalised a model that allows for full control over robot speed, body orientation and walk gait type to employ. Furthermore a way to make the robot autonomously follow a set trajectory will be shown and terrain interaction will be deeply investigated, ending with the development of a terrain-adapting control algorithm that will allow the robot to react swiftly to terrain shape and asperities such as nonlinearities and noncontinuity within the workspace. Then it will be presented a dynamic model derived from the interpretation of the hexapod movement to be comparable to these of the base-platform PKM machines, and said model will be validated through Matlab SimMechanicsTM physics simulation. Robot 3D model and Inertial values will be calculated through a sophisticated Autodesk InventorTM assembly. Finally real experimental setups will be taken into account with reference to the PhantomX AX Metal Hexapod Mark II robot by Trossen RoboticsTM, and it will be presented a feed-back control system able to recognise leg-terrain touch and react accordingly to assure movement stability. Finally the control models developed will be put to test in real tasks to assess performances and robustness outside the simulation environment.File | Dimensione | Formato | |
---|---|---|---|
2020_10_Zangrandi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
85.79 MB
Formato
Adobe PDF
|
85.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/167209