The Submerged Floating Tunnel (SFT) is an innovative typology of structure, which can be a valid alternative to bridges for deep water crossing. It generally consists of a tunnel tube suspended in water, anchor cables and deep-water foundations. The great advantages that the SFT has over traditional bridges are that it is an invisible and greener structure, and it is less dependent on environmental actions because it is submerged at a sufficient depth, between 30-40 meters. Despite its advantages, the SFT is a never built structure. In the last decades, many feasibility studies have been carried but no specific studies regarding the effects of the tunnel longitudinal alignment have been found. In this thesis, case studies were carried out to analyse the feasibility of SFT with suspension cables. In order to apply an SFT in a field site, the system should be controlled under extreme wave conditions. The aim of the thesis is to identify the hydrodynamic behavior by varying the SFT design parameters. First, a detailed literature review of existing SFT designs and reports is included. From this are gained useful information about the SFT cross section, buoyancy weight ratio, anchoring system, and installation depth of the tunnel. Taking into consideration the literature recommendations and by developing an analytical method, a simple and effective draft design is obtained. In particular it seems convenient to adopt a tunnel horizontal radius of curvature of 3130 meters and a vertical slope of 4%, which is referred to as double arch configuration. Three variants of the double arch configuration are implemented in the FEM program Abaqus. In the first variant (model A) no additional suspension cables are adopted, in the second (model B) two vertical cables connects the tunnel mid-span to the sea bed, the third (model C) differ from model B as one of the two cables is inclined of 45° and a pulley is interposed between the tunnel and the cables. The three aforementioned models are also compared to a straight tunnel configuration with two vertical cables at mid-span (model D). An extremely important parameter in SFT design is the buoyancy weight ratio (BWR), therefore several cycles of static, modal, and dynamic analysis varying this ratio have been performed on each model in order improve their performances finding an optimal BWR. The four models are then compared under harmonic extreme wave state. It is found that the double arch configuration has a sufficient lateral stiffness and so the inclined cable is not needed, while two vertical cables are necessary to fulfil the structural requirements. Moreover, when the same number of suspension cables are adopted the double arch configuration halve the horizontal oscillations if compared to the straight tunnel configuration. iConsequently, it is obtained that model B is the most effective SFT concept for the wave state considered. Additional sensitivity studies are performed in model B. The model is tested with more severe environmental conditions, and positive results are obtained regarding the structural requirements. In addition, the effects of the tunnel end connections stiffness on the structural response of model B are analysed. It is found that an optimal cost-effective solution is between a pin and a clamp connection. Finally, a more realistic analysis with nondeterministic irregular wave is performed. Comparing this result to the previous regular wave analysis it is proved that the regular analysis assumptions are highly conservative.
Il Tunnel Flottante in Alveo è una infrastruttura innovativa, che può essere una valida alternativa ai ponti tradizionali, per attraversamenti caratterizzati da acque profonde. In generale è composto da un tunnel galleggiante, cavi di ancoraggio e fondazioni sul fondale marino. Gli eccezionali vantaggi del Tunnel Flottante in Alveo sui ponti tradizionali sono l’invisibilità da terra, la maggiore sostenibilità, e la ridotta dipendenza dalle azioni ambientali se sommerso ad una profondità sufficiente, generalmente 30-40 metri. Nonostante i suoi vantaggi, tale struttura non è mai stata costruita sino ad ora, anche se negli ultimi decenni, molti studi di fattibilità sono stati realizzati. In questa tesi, sono presenti studi preliminari di tunnel flottanti in alveo e con cavi sospesi. Al fine di realizzare un Tunnel Flottante in Alveo sono indispensabili opportune analisi idrodinamiche in condizioni marittime estreme. Lo scopo della tesi è quello di indagare il comportamento idrodinamico della struttura al variare dei parametri di progetto della stessa. Innanzitutto, una dettagliata revisione della letteratura e dei progetti esistente viene inclusa. Da essa vengono acquisite importanti informazioni riguardo i dettagli strutturali come la sezione trasversale, il rapporto peso-galleggiamento, il sistema di ancoraggio, e la profondità di installazione. Prendendo in considerazione le raccomandazioni presenti nella letteratura, e sviluppando un modello analitico, viene ottenuta una semplice bozza progettuale. In essa risultano ideali un raggio di curvatura orizzontale del tunnel di 3130 metri ed una inclinazione dell’asse verticale del 4%, tale allineamento viene riferito come arco a doppia curvature. Tre varianti dell’arco a doppia curvatura sono in seguito implementante nel programma agli elementi finiti Abaqus. Nella prima variante (modello A) non sono presenti cavi di ancoraggio, nella seconda (modello B) sono installati due cavi di ancoraggio verticali in mezzeria, nella terza (modello C) sono istallati un cavo verticale ed uno inclinato di 45°collegati da una puleggia. I tre modelli precedentemente menzionati sono inoltre comparati ad una variante del tunnel rettilinea con due cavi di ancoraggio verticali in mezzeria (modello D). Il rapporto peso-galleggiamento è un parametro estremamente importante nella progettazione di tunnel flottanti in alveo, perciò una serie di analisi statiche, modali e dinamiche con diversi valori di tale rapporto sono state effettuate per ogni modello. In tal modo è risultato possibile identificare un rapporto ottimale per ogni configurazione. I quattro modelli vengono in seguito comparati attraverso analisi dinamiche con onde regolari. Risulta che la configurazione ad arco con doppia curvatura ha una elevata rigidezza laterale e quindi è innecessario adottare cavi inclinati, mentre sono necessari cavi verticali per avere una rigidezza verticale sufficiente. In aggiunta, confrontando la configurazione a doppio arco con la configurazione rettilinea, entrambe con la medesima disposizione degli ancoraggi, risulta che la configurazione a doppio arco ha oscillazioni dinamiche orizzontali minori. Di conseguenza, dai risultati ottenuti si ottiene che il modello B è il più vantaggioso, relativamente alle condizioni di carico prese in considerazione. Successivamente vengono effettuati ulteriori studi di sensibilità sul modello B. Il modello viene testato con azioni di carico esterne più severe, nelle quali vengono soddisfatti i requisiti strutturali. In aggiunta, viene esaminata la risposta strutturale al variare della rigidezza dei collegamenti alle estremità del ponte. Risulta conveniente una rigidezza intermedia tra un incastro rigido ed un semplice appoggio. Infine, una analisi più realistica, non deterministica, con onde irregolari viene eseguita. Confrontando i risultati con quelli ottenuti nelle precedenti analisi deterministiche, viene dimostrato che le ipotesi adottate in precedenza, per esempio la perpendicolarità tra tunnel e direzione dell’onda, sono molto conservative.
Global analysis of submerged floating tunnels under hydrodynamic loading
Mascella, Martin
2019/2020
Abstract
The Submerged Floating Tunnel (SFT) is an innovative typology of structure, which can be a valid alternative to bridges for deep water crossing. It generally consists of a tunnel tube suspended in water, anchor cables and deep-water foundations. The great advantages that the SFT has over traditional bridges are that it is an invisible and greener structure, and it is less dependent on environmental actions because it is submerged at a sufficient depth, between 30-40 meters. Despite its advantages, the SFT is a never built structure. In the last decades, many feasibility studies have been carried but no specific studies regarding the effects of the tunnel longitudinal alignment have been found. In this thesis, case studies were carried out to analyse the feasibility of SFT with suspension cables. In order to apply an SFT in a field site, the system should be controlled under extreme wave conditions. The aim of the thesis is to identify the hydrodynamic behavior by varying the SFT design parameters. First, a detailed literature review of existing SFT designs and reports is included. From this are gained useful information about the SFT cross section, buoyancy weight ratio, anchoring system, and installation depth of the tunnel. Taking into consideration the literature recommendations and by developing an analytical method, a simple and effective draft design is obtained. In particular it seems convenient to adopt a tunnel horizontal radius of curvature of 3130 meters and a vertical slope of 4%, which is referred to as double arch configuration. Three variants of the double arch configuration are implemented in the FEM program Abaqus. In the first variant (model A) no additional suspension cables are adopted, in the second (model B) two vertical cables connects the tunnel mid-span to the sea bed, the third (model C) differ from model B as one of the two cables is inclined of 45° and a pulley is interposed between the tunnel and the cables. The three aforementioned models are also compared to a straight tunnel configuration with two vertical cables at mid-span (model D). An extremely important parameter in SFT design is the buoyancy weight ratio (BWR), therefore several cycles of static, modal, and dynamic analysis varying this ratio have been performed on each model in order improve their performances finding an optimal BWR. The four models are then compared under harmonic extreme wave state. It is found that the double arch configuration has a sufficient lateral stiffness and so the inclined cable is not needed, while two vertical cables are necessary to fulfil the structural requirements. Moreover, when the same number of suspension cables are adopted the double arch configuration halve the horizontal oscillations if compared to the straight tunnel configuration. iConsequently, it is obtained that model B is the most effective SFT concept for the wave state considered. Additional sensitivity studies are performed in model B. The model is tested with more severe environmental conditions, and positive results are obtained regarding the structural requirements. In addition, the effects of the tunnel end connections stiffness on the structural response of model B are analysed. It is found that an optimal cost-effective solution is between a pin and a clamp connection. Finally, a more realistic analysis with nondeterministic irregular wave is performed. Comparing this result to the previous regular wave analysis it is proved that the regular analysis assumptions are highly conservative.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Martin_Mascella_09,07,2020.pdf
Open Access dal 10/07/2021
Descrizione: Tesi
Dimensione
11.06 MB
Formato
Adobe PDF
|
11.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/167253