The analysis of single cells on low-cost and portable platforms called Lab-on-chips (LOCs) is a promising field of research that is proposed as a method to study properties and characteristics of numerous cell samples, easily accessible and automated. In this context, Light Sheet Fluorescence Microscopy (LSFM) integrated in a microfluidic chip is an innovative technology capable of providing fluorescence analysis for 3D reconstructions of individual cells. This technique involves the selective illumination of a section of the sample, possible by focusing the light to form the so-called 'light sheet', and the acquisition of this section through a camera. By translating the sample with respect to the illumination or vice-versa, different planes of the sample can be acquired. Integrating this technique with microfluidics means sliding the samples through a microfluidic channel and, when they pass through the LSFM excitation beam, acquire the scanned planes. This technology has compact dimensions and the required optical set-up is easily available in specialized laboratories. In principle, these devices guarantee an automatic and continuous acquisition of the sample until the fluid, where the cells are in suspension, is processed. In practice, various aspects can contribute to make difficult and problematic the capture and transport of cells. The following thesis work wants to deepen the dynamics related to the transport of the cells from the starting reservoir until their exit from the chip with the aim of making the sample processing efficient and automated. Specifically, within the PRO-Chip project, a modification to the microfluidic set-up at the input reservoir has been proposed and the effects of this have been experimentally analyzed. The performance of the device in terms of probability of cell accumulation, cell passage frequency and stability of the sample under measurement were evaluated with different materials, geometries and flow conditions by simulating the measurement process in COMSOL. In order to automate the measurement, the microfluidic control was integrated with the optical part using a Python software module for the management of microscopy and spectroscopy instruments called ScopeFoundry.
L’analisi di singole cellule su piattaforme portatili e a basso costo, dette Lab-on-chips (LOCs) è un promettente ambito di ricerca che si propone come metodo per studiare proprietà e caratteristiche di campioni cellulari numerosi, facilmente accessibile e automatizzato. In questo contesto la Light Sheet Fluorescence Microscopy (LSFM) integrata in un chip microfluidico risulta essere un’innovativa tecnologia in grado di fornire un’analisi in fluorescenza per ricostruzioni 3D di singole cellule. Questa tecnica prevede l'illuminazione selettiva di una sezione del campione, possibile focalizzando la luce a formare il così detto 'light sheet', e l'acquisizione di tale sezione attraverso una camera. Traslando il campione rispetto all'illuminazione o vice-versa, si possono acquisire diversi piani del campione. Integrare questa tecnica con la microfluidica implica far scorrere i campioni all’interno di un canale microfluidico e quando questi attraversano il fascio di eccitazione della LSFM, acquisire i piani sezionati. Questa tecnologia presenta dimensioni molto ridotte e il set-up ottico richiesto è facilmente reperibile in laboratori specializzati. In linea di principio questi dispositivi garantiscono un’automatica e continua acquisizione del campione fino a che il fluido, dove le cellule si trovano in sospensione, viene processato. In pratica vari fattori possono concorrere a rendere difficile e problematica la cattura e il trasporto delle cellule. Il seguente lavoro di tesi vuole approfondire le dinamiche relative al trasporto delle cellule dal reservoir di partenza fino alla loro fuoriuscita dal chip, con l’obbiettivo di rendere efficiente e automatizzata la processazione del campione. Nello specifico all’interno del progetto PRO-Chip è stata proposta una modifica al set-up microfluidico relativo al reservoir di ingresso e gli effetti di tale modifica sono stati analizzati sperimentalmente. Le performance del device in termini di probabilità di accumulo di cellule, frequenza di passaggio delle cellule e staticità del campione sotto misura sono state valutate con diversi materiali, geometrie e condizioni di flusso simulando il processo di misura in COMSOL. In prospettiva di poter automatizzare la misura, il controllo microfluidico è stato integrato con quello della parte ottica utilizzando un modulo del software Python per la gestione di strumenti per la microscopia e spettroscopia chiamato ScopeFoundry.
Microfluidic optimization for automatic optical microscopy
Marsano, Matteo
2019/2020
Abstract
The analysis of single cells on low-cost and portable platforms called Lab-on-chips (LOCs) is a promising field of research that is proposed as a method to study properties and characteristics of numerous cell samples, easily accessible and automated. In this context, Light Sheet Fluorescence Microscopy (LSFM) integrated in a microfluidic chip is an innovative technology capable of providing fluorescence analysis for 3D reconstructions of individual cells. This technique involves the selective illumination of a section of the sample, possible by focusing the light to form the so-called 'light sheet', and the acquisition of this section through a camera. By translating the sample with respect to the illumination or vice-versa, different planes of the sample can be acquired. Integrating this technique with microfluidics means sliding the samples through a microfluidic channel and, when they pass through the LSFM excitation beam, acquire the scanned planes. This technology has compact dimensions and the required optical set-up is easily available in specialized laboratories. In principle, these devices guarantee an automatic and continuous acquisition of the sample until the fluid, where the cells are in suspension, is processed. In practice, various aspects can contribute to make difficult and problematic the capture and transport of cells. The following thesis work wants to deepen the dynamics related to the transport of the cells from the starting reservoir until their exit from the chip with the aim of making the sample processing efficient and automated. Specifically, within the PRO-Chip project, a modification to the microfluidic set-up at the input reservoir has been proposed and the effects of this have been experimentally analyzed. The performance of the device in terms of probability of cell accumulation, cell passage frequency and stability of the sample under measurement were evaluated with different materials, geometries and flow conditions by simulating the measurement process in COMSOL. In order to automate the measurement, the microfluidic control was integrated with the optical part using a Python software module for the management of microscopy and spectroscopy instruments called ScopeFoundry.File | Dimensione | Formato | |
---|---|---|---|
2020_07_Marsano.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi magistrale ing. fisica Matteo Marsano
Dimensione
8.27 MB
Formato
Adobe PDF
|
8.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/167292